Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291383531> ?p ?o ?g. }
- W4291383531 abstract "Abstract The radiative forcing of anthropogenic aerosols associated with aerosol‐cloud interactions (RF aci ) remains the largest source of uncertainty in climate prediction. The calculation of particle number concentration (PNC), one of the critical parameters affecting RF aci , is generally simplified in climate models. Here we employ outputs from long‐term (30‐year) simulations of a global size‐resolved (sectional) aerosol microphysics model and a machine‐learning tool to develop a Random Forest Regression Model (RFRM) for PNC. We have implemented the PNC RFRM in GISS‐ModelE2.1 with a mass‐based One‐Moment Aerosol module, which is one of CMIP6 models. Compared to the default setting, the GISS‐ModelE2.1 simulation based on RFRM reduces the changes of cloud droplet number concentration associated with anthropogenic emissions, and decreases the RF aci from −1.46 to −1.11 W·m −2 . This work highlights a promising approach based on machine learning to reduce uncertainties of climate models in predicting PNC and RF aci without compromising their computing efficiency." @default.
- W4291383531 created "2022-08-15" @default.
- W4291383531 creator A5012891775 @default.
- W4291383531 creator A5017366139 @default.
- W4291383531 creator A5057670256 @default.
- W4291383531 creator A5058257869 @default.
- W4291383531 creator A5084358051 @default.
- W4291383531 date "2022-08-23" @default.
- W4291383531 modified "2023-10-17" @default.
- W4291383531 title "Use of Machine Learning to Reduce Uncertainties in Particle Number Concentration and Aerosol Indirect Radiative Forcing Predicted by Climate Models" @default.
- W4291383531 cites W1546982118 @default.
- W4291383531 cites W1862105058 @default.
- W4291383531 cites W1910754480 @default.
- W4291383531 cites W1980560428 @default.
- W4291383531 cites W1991146308 @default.
- W4291383531 cites W1991868326 @default.
- W4291383531 cites W2000090475 @default.
- W4291383531 cites W2006165291 @default.
- W4291383531 cites W2022762325 @default.
- W4291383531 cites W2030617222 @default.
- W4291383531 cites W2033584544 @default.
- W4291383531 cites W2043986368 @default.
- W4291383531 cites W2047648069 @default.
- W4291383531 cites W2062208302 @default.
- W4291383531 cites W2064943738 @default.
- W4291383531 cites W2075035272 @default.
- W4291383531 cites W2094688663 @default.
- W4291383531 cites W2096900909 @default.
- W4291383531 cites W2097372672 @default.
- W4291383531 cites W2108039803 @default.
- W4291383531 cites W2109229209 @default.
- W4291383531 cites W2119744638 @default.
- W4291383531 cites W2125142335 @default.
- W4291383531 cites W2125148711 @default.
- W4291383531 cites W2134309201 @default.
- W4291383531 cites W2138017294 @default.
- W4291383531 cites W2140001654 @default.
- W4291383531 cites W2147331530 @default.
- W4291383531 cites W2151494953 @default.
- W4291383531 cites W2159110989 @default.
- W4291383531 cites W2173852084 @default.
- W4291383531 cites W2323005424 @default.
- W4291383531 cites W2537097125 @default.
- W4291383531 cites W2591685540 @default.
- W4291383531 cites W2600399632 @default.
- W4291383531 cites W2782871819 @default.
- W4291383531 cites W2786588599 @default.
- W4291383531 cites W2805862025 @default.
- W4291383531 cites W2896974469 @default.
- W4291383531 cites W2911964244 @default.
- W4291383531 cites W2941035084 @default.
- W4291383531 cites W2946188186 @default.
- W4291383531 cites W2949514127 @default.
- W4291383531 cites W2953423997 @default.
- W4291383531 cites W2974598603 @default.
- W4291383531 cites W2980573926 @default.
- W4291383531 cites W2991594594 @default.
- W4291383531 cites W3003276362 @default.
- W4291383531 cites W3030536251 @default.
- W4291383531 cites W3038840089 @default.
- W4291383531 cites W3040695841 @default.
- W4291383531 cites W3080794575 @default.
- W4291383531 cites W3102027041 @default.
- W4291383531 cites W3107709348 @default.
- W4291383531 cites W3133373857 @default.
- W4291383531 cites W3215240525 @default.
- W4291383531 cites W4297957988 @default.
- W4291383531 doi "https://doi.org/10.1029/2022gl098551" @default.
- W4291383531 hasPublicationYear "2022" @default.
- W4291383531 type Work @default.
- W4291383531 citedByCount "1" @default.
- W4291383531 countsByYear W42913835312023 @default.
- W4291383531 crossrefType "journal-article" @default.
- W4291383531 hasAuthorship W4291383531A5012891775 @default.
- W4291383531 hasAuthorship W4291383531A5017366139 @default.
- W4291383531 hasAuthorship W4291383531A5057670256 @default.
- W4291383531 hasAuthorship W4291383531A5058257869 @default.
- W4291383531 hasAuthorship W4291383531A5084358051 @default.
- W4291383531 hasBestOaLocation W42913835311 @default.
- W4291383531 hasConcept C111368507 @default.
- W4291383531 hasConcept C121332964 @default.
- W4291383531 hasConcept C127313418 @default.
- W4291383531 hasConcept C132651083 @default.
- W4291383531 hasConcept C153294291 @default.
- W4291383531 hasConcept C168754636 @default.
- W4291383531 hasConcept C197115733 @default.
- W4291383531 hasConcept C2779345167 @default.
- W4291383531 hasConcept C39432304 @default.
- W4291383531 hasConcept C49204034 @default.
- W4291383531 hasConcept C62520636 @default.
- W4291383531 hasConcept C74902906 @default.
- W4291383531 hasConcept C91586092 @default.
- W4291383531 hasConcept C99578197 @default.
- W4291383531 hasConceptScore W4291383531C111368507 @default.
- W4291383531 hasConceptScore W4291383531C121332964 @default.
- W4291383531 hasConceptScore W4291383531C127313418 @default.
- W4291383531 hasConceptScore W4291383531C132651083 @default.
- W4291383531 hasConceptScore W4291383531C153294291 @default.
- W4291383531 hasConceptScore W4291383531C168754636 @default.
- W4291383531 hasConceptScore W4291383531C197115733 @default.