Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291414926> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4291414926 endingPage "8086" @default.
- W4291414926 startingPage "8086" @default.
- W4291414926 abstract "Nowadays, during the diagnosis process, the doctor is able to obtain access to much information describing the patient’s condition using appropriate tools. However, there are always two sides to the coin. The doctor has certain limitations regarding the amount of data they can process at once. Information technology comes to the rescue, which with the help of computers is able to quickly and effectively separate important information from redundant information and support the doctor in making a diagnosis. In this work, a decision-making system was created to diagnose common lung pathologies in digital radiography images. Here, we consider four basic pulmonary diseases: pneumothorax, pneumonia, pulmonary consolidation, and lung lesions. Our objective is to develop a new automatic detection method of lung pathologies on chest X-ray radiographs using python programming language and its libraries. The approach uses solutions in the field of artificial intelligence, such as deep learning, convolutional neural network and segmentation to make a diagnosis that aims to help the radiologist at work. In the first sections, this work describes the fundamentals of the present form of diagnosis, a proposal to improve this process, the method of operation of the algorithms used, data acquisition, segmentation and processing methods. Then, the results of the operation of four different models and their implementation in a practical window program were presented. The best model, which detects pulmonary consolidation, achieves accuracy higher than 91%, which is a satisfactory result because they are not intended to replace radiologists but to improve their work. In the future, this type of program can be further developed by adding models that recognize other conditions." @default.
- W4291414926 created "2022-08-15" @default.
- W4291414926 creator A5022962657 @default.
- W4291414926 creator A5050819075 @default.
- W4291414926 date "2022-08-12" @default.
- W4291414926 modified "2023-09-26" @default.
- W4291414926 title "Machine Learning in Recognition of Basic Pulmonary Pathologies" @default.
- W4291414926 cites W2097475056 @default.
- W4291414926 cites W2128739912 @default.
- W4291414926 cites W2174661749 @default.
- W4291414926 cites W2313422996 @default.
- W4291414926 cites W2623144351 @default.
- W4291414926 cites W2751298778 @default.
- W4291414926 cites W2763355946 @default.
- W4291414926 cites W2767128594 @default.
- W4291414926 cites W2773564180 @default.
- W4291414926 cites W2810734443 @default.
- W4291414926 cites W2903150666 @default.
- W4291414926 cites W2963466845 @default.
- W4291414926 cites W3022741212 @default.
- W4291414926 cites W3089274025 @default.
- W4291414926 cites W3124552521 @default.
- W4291414926 cites W3143189038 @default.
- W4291414926 cites W3158199698 @default.
- W4291414926 cites W4225158938 @default.
- W4291414926 cites W4226379277 @default.
- W4291414926 doi "https://doi.org/10.3390/app12168086" @default.
- W4291414926 hasPublicationYear "2022" @default.
- W4291414926 type Work @default.
- W4291414926 citedByCount "1" @default.
- W4291414926 countsByYear W42914149262023 @default.
- W4291414926 crossrefType "journal-article" @default.
- W4291414926 hasAuthorship W4291414926A5022962657 @default.
- W4291414926 hasAuthorship W4291414926A5050819075 @default.
- W4291414926 hasBestOaLocation W42914149261 @default.
- W4291414926 hasConcept C119857082 @default.
- W4291414926 hasConcept C154945302 @default.
- W4291414926 hasConcept C41008148 @default.
- W4291414926 hasConcept C81363708 @default.
- W4291414926 hasConcept C89600930 @default.
- W4291414926 hasConceptScore W4291414926C119857082 @default.
- W4291414926 hasConceptScore W4291414926C154945302 @default.
- W4291414926 hasConceptScore W4291414926C41008148 @default.
- W4291414926 hasConceptScore W4291414926C81363708 @default.
- W4291414926 hasConceptScore W4291414926C89600930 @default.
- W4291414926 hasIssue "16" @default.
- W4291414926 hasLocation W42914149261 @default.
- W4291414926 hasLocation W42914149262 @default.
- W4291414926 hasOpenAccess W4291414926 @default.
- W4291414926 hasPrimaryLocation W42914149261 @default.
- W4291414926 hasRelatedWork W2521062615 @default.
- W4291414926 hasRelatedWork W2961085424 @default.
- W4291414926 hasRelatedWork W3016958897 @default.
- W4291414926 hasRelatedWork W3021430260 @default.
- W4291414926 hasRelatedWork W3027997911 @default.
- W4291414926 hasRelatedWork W3181746755 @default.
- W4291414926 hasRelatedWork W4200528772 @default.
- W4291414926 hasRelatedWork W4287776258 @default.
- W4291414926 hasRelatedWork W4306674287 @default.
- W4291414926 hasRelatedWork W4224009465 @default.
- W4291414926 hasVolume "12" @default.
- W4291414926 isParatext "false" @default.
- W4291414926 isRetracted "false" @default.
- W4291414926 workType "article" @default.