Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291536435> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4291536435 endingPage "228" @default.
- W4291536435 startingPage "225" @default.
- W4291536435 abstract "predicting stock market is one of the challenging tasks in the field of computation. Physical vs. physiological elements, rational vs. illogical conduct, investor emotions, market rumors, and other factors all play a role in the prediction. All of these factors combine to make stock values very fluctuating and difficult to forecast accurately. We look towards data analysis as a potential game-changer in this field. When all information about a company and stock market events is promptly available to all stakeholders/market participants, according to efficient market theory, the impacts of those occurrences are already incorporated in the stock price. As a result, it is stated that only the historical spot price accurately represents all other market events and may be used to predict future movements. As a consequence, we infer future trends using Machine Learning (ML) techniques on historical stock price data, using the previous stock price as the final representation of all influencing factors. Machine learning techniques can reveal previously undiscovered patterns and insights, which can subsequently be used to make accurate predictions. Using the LSTM (Long Short-Term Memory) model and the company's net growth calculation approach, we create a system for assessing and projecting a company's future development." @default.
- W4291536435 created "2022-08-15" @default.
- W4291536435 creator A5008188505 @default.
- W4291536435 creator A5028400972 @default.
- W4291536435 creator A5041815893 @default.
- W4291536435 creator A5079232410 @default.
- W4291536435 creator A5089538714 @default.
- W4291536435 date "2022-06-01" @default.
- W4291536435 modified "2023-10-18" @default.
- W4291536435 title "STOCK PRICE PREDICTION USING MACHINE LEARNING" @default.
- W4291536435 doi "https://doi.org/10.33564/ijeast.2022.v07i02.034" @default.
- W4291536435 hasPublicationYear "2022" @default.
- W4291536435 type Work @default.
- W4291536435 citedByCount "0" @default.
- W4291536435 crossrefType "journal-article" @default.
- W4291536435 hasAuthorship W4291536435A5008188505 @default.
- W4291536435 hasAuthorship W4291536435A5028400972 @default.
- W4291536435 hasAuthorship W4291536435A5041815893 @default.
- W4291536435 hasAuthorship W4291536435A5079232410 @default.
- W4291536435 hasAuthorship W4291536435A5089538714 @default.
- W4291536435 hasBestOaLocation W42915364351 @default.
- W4291536435 hasConcept C119857082 @default.
- W4291536435 hasConcept C127413603 @default.
- W4291536435 hasConcept C143724316 @default.
- W4291536435 hasConcept C149782125 @default.
- W4291536435 hasConcept C151730666 @default.
- W4291536435 hasConcept C154945302 @default.
- W4291536435 hasConcept C162324750 @default.
- W4291536435 hasConcept C204036174 @default.
- W4291536435 hasConcept C2780299701 @default.
- W4291536435 hasConcept C2780762169 @default.
- W4291536435 hasConcept C2988984586 @default.
- W4291536435 hasConcept C41008148 @default.
- W4291536435 hasConcept C78519656 @default.
- W4291536435 hasConcept C86803240 @default.
- W4291536435 hasConceptScore W4291536435C119857082 @default.
- W4291536435 hasConceptScore W4291536435C127413603 @default.
- W4291536435 hasConceptScore W4291536435C143724316 @default.
- W4291536435 hasConceptScore W4291536435C149782125 @default.
- W4291536435 hasConceptScore W4291536435C151730666 @default.
- W4291536435 hasConceptScore W4291536435C154945302 @default.
- W4291536435 hasConceptScore W4291536435C162324750 @default.
- W4291536435 hasConceptScore W4291536435C204036174 @default.
- W4291536435 hasConceptScore W4291536435C2780299701 @default.
- W4291536435 hasConceptScore W4291536435C2780762169 @default.
- W4291536435 hasConceptScore W4291536435C2988984586 @default.
- W4291536435 hasConceptScore W4291536435C41008148 @default.
- W4291536435 hasConceptScore W4291536435C78519656 @default.
- W4291536435 hasConceptScore W4291536435C86803240 @default.
- W4291536435 hasIssue "2" @default.
- W4291536435 hasLocation W42915364351 @default.
- W4291536435 hasOpenAccess W4291536435 @default.
- W4291536435 hasPrimaryLocation W42915364351 @default.
- W4291536435 hasRelatedWork W2027694136 @default.
- W4291536435 hasRelatedWork W2034155662 @default.
- W4291536435 hasRelatedWork W2052189198 @default.
- W4291536435 hasRelatedWork W2065259729 @default.
- W4291536435 hasRelatedWork W2103096761 @default.
- W4291536435 hasRelatedWork W2371073704 @default.
- W4291536435 hasRelatedWork W2380989237 @default.
- W4291536435 hasRelatedWork W2591580583 @default.
- W4291536435 hasRelatedWork W3125677545 @default.
- W4291536435 hasRelatedWork W4226163140 @default.
- W4291536435 hasVolume "7" @default.
- W4291536435 isParatext "false" @default.
- W4291536435 isRetracted "false" @default.
- W4291536435 workType "article" @default.