Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291651639> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4291651639 endingPage "153" @default.
- W4291651639 startingPage "148" @default.
- W4291651639 abstract "With location-based smart applications, the flow of life can be facilitated and support can be provided in case of security and emergency situations. Indoor location detection provides various conveniences in complex structures such as hospitals, schools, shopping centers, etc. Indoor location detection studies are carried out by using data related to location and signal and machine learning methods. Machine learning has become frequently used as a solution method in this field, as in many other fields. When the studies in the literature are examined, it is seen that the studies are mainly focused on producing solutions with supervised machine learning algorithms. Unsupervised algorithms are frequently used to determine the labels of data groups that do not have labels. In this direction, it can be seen as the first step in labeling the data collected in indoor positioning studies and then using it for training predictive models to be developed with supervised learning methods. For this reason, the results to be obtained regarding the success and usefulness of cluster analysis will constitute an important basis for further studies. In this study, it is aimed to examine the success of unsupervised learning, in other words, clustering algorithms. The Wireless Indoor Localization Data Set and well-known k-Means and Fuzzy c-Means algorithms have been used with different distance measure. The obtained methods performances have been evaluated with internal and external indices. The results show that the clustering algorithms can cluster correctly data points in the range of 93-95% according to the accuracy and F measure value. Although performances indicators are very close to each other according to the internal indexes, it can be stated that the model obtained using the Manhattan distance measure and the k-Means algorithm has higher performance in terms of clustering success." @default.
- W4291651639 created "2022-08-15" @default.
- W4291651639 creator A5036515393 @default.
- W4291651639 date "2022-08-15" @default.
- W4291651639 modified "2023-09-30" @default.
- W4291651639 title "Research on the success of unsupervised learning algorithms in indoor location prediction" @default.
- W4291651639 cites W1489991816 @default.
- W4291651639 cites W2106581202 @default.
- W4291651639 cites W2107300377 @default.
- W4291651639 cites W2138081784 @default.
- W4291651639 cites W2149438367 @default.
- W4291651639 cites W2181675000 @default.
- W4291651639 cites W2591079949 @default.
- W4291651639 cites W2779526406 @default.
- W4291651639 cites W2789449549 @default.
- W4291651639 cites W2795188263 @default.
- W4291651639 cites W2842899346 @default.
- W4291651639 cites W2890475204 @default.
- W4291651639 cites W2922059131 @default.
- W4291651639 cites W2945382853 @default.
- W4291651639 cites W3089168069 @default.
- W4291651639 cites W3133993667 @default.
- W4291651639 cites W3167123218 @default.
- W4291651639 cites W3177876878 @default.
- W4291651639 cites W4206644302 @default.
- W4291651639 cites W4210295017 @default.
- W4291651639 cites W4250042253 @default.
- W4291651639 doi "https://doi.org/10.35860/iarej.1096573" @default.
- W4291651639 hasPublicationYear "2022" @default.
- W4291651639 type Work @default.
- W4291651639 citedByCount "1" @default.
- W4291651639 countsByYear W42916516392023 @default.
- W4291651639 crossrefType "journal-article" @default.
- W4291651639 hasAuthorship W4291651639A5036515393 @default.
- W4291651639 hasBestOaLocation W42916516391 @default.
- W4291651639 hasConcept C11413529 @default.
- W4291651639 hasConcept C119857082 @default.
- W4291651639 hasConcept C124101348 @default.
- W4291651639 hasConcept C154945302 @default.
- W4291651639 hasConcept C177264268 @default.
- W4291651639 hasConcept C199360897 @default.
- W4291651639 hasConcept C202444582 @default.
- W4291651639 hasConcept C2780009758 @default.
- W4291651639 hasConcept C33923547 @default.
- W4291651639 hasConcept C41008148 @default.
- W4291651639 hasConcept C73555534 @default.
- W4291651639 hasConcept C8038995 @default.
- W4291651639 hasConcept C9652623 @default.
- W4291651639 hasConceptScore W4291651639C11413529 @default.
- W4291651639 hasConceptScore W4291651639C119857082 @default.
- W4291651639 hasConceptScore W4291651639C124101348 @default.
- W4291651639 hasConceptScore W4291651639C154945302 @default.
- W4291651639 hasConceptScore W4291651639C177264268 @default.
- W4291651639 hasConceptScore W4291651639C199360897 @default.
- W4291651639 hasConceptScore W4291651639C202444582 @default.
- W4291651639 hasConceptScore W4291651639C2780009758 @default.
- W4291651639 hasConceptScore W4291651639C33923547 @default.
- W4291651639 hasConceptScore W4291651639C41008148 @default.
- W4291651639 hasConceptScore W4291651639C73555534 @default.
- W4291651639 hasConceptScore W4291651639C8038995 @default.
- W4291651639 hasConceptScore W4291651639C9652623 @default.
- W4291651639 hasIssue "2" @default.
- W4291651639 hasLocation W42916516391 @default.
- W4291651639 hasLocation W42916516392 @default.
- W4291651639 hasOpenAccess W4291651639 @default.
- W4291651639 hasPrimaryLocation W42916516391 @default.
- W4291651639 hasRelatedWork W3007915134 @default.
- W4291651639 hasRelatedWork W3046775127 @default.
- W4291651639 hasRelatedWork W3123344745 @default.
- W4291651639 hasRelatedWork W3196155444 @default.
- W4291651639 hasRelatedWork W3208099188 @default.
- W4291651639 hasRelatedWork W3209574120 @default.
- W4291651639 hasRelatedWork W4285260836 @default.
- W4291651639 hasRelatedWork W4306321456 @default.
- W4291651639 hasRelatedWork W4367692580 @default.
- W4291651639 hasRelatedWork W4386462264 @default.
- W4291651639 hasVolume "6" @default.
- W4291651639 isParatext "false" @default.
- W4291651639 isRetracted "false" @default.
- W4291651639 workType "article" @default.