Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291750984> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4291750984 abstract "PreviousNext No AccessSecond International Meeting for Applied Geoscience & EnergyUsing deep learning for automatic detection and segmentation of carbonate microtexturesAuthors: Claire BirnieViswasanthi ChandraClaire BirnieKAUSTSearch for more papers by this author and Viswasanthi ChandraKAUSTSearch for more papers by this authorhttps://doi.org/10.1190/image2022-3751305.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractThe difficulties involved in studying micrometer-sized micrite crystals, and quantifying the associated impact on large scale geophysical properties, have long hindered our society’s understanding of both Middle Eastern and global microporous limestones. Instance segmentation procedures, from the field of deep learning, offer the ability to identify at a pixel-level each individual crystal within an SEM image, allowing for automated morphological analysis. We illustrate how the common Masked Region-based Convolution Neural Network from computer vision can be adapted to the task of identifying individual micrite crystal within gray-scale SEM images. Leveraging Transfer Learning, the ResNet50 neural architecture is used with weights initialized through a pre-training on Microsoft’s Common Objects in COntext (COCO) dataset. The resulting model accurately detects and separates a number of crystals observed within different SEM images. However the trained model is also shown to be highly susceptible to noise introduced as part of the imaging procedure, for example charging noise. Future work will aim to make the procedure more robust, reducing the impact of noise by adapting the pre-processing workflow and incorporating more noisy images into the training dataset.Keywords: machine learning, SEM analysis, thin sections, deep learning, instance segmentationPermalink: https://doi.org/10.1190/image2022-3751305.1FiguresReferencesRelatedDetails Second International Meeting for Applied Geoscience & EnergyISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2022 Pages: 3694 publication data© 2022 Published in electronic format with permission by the Society of Exploration Geophysicists and the American Association of Petroleum GeologistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 15 Aug 2022 CITATION INFORMATION Claire Birnie and Viswasanthi Chandra, (2022), Using deep learning for automatic detection and segmentation of carbonate microtextures, SEG Technical Program Expanded Abstracts : 376-380. https://doi.org/10.1190/image2022-3751305.1 Plain-Language Summary Keywordsmachine learningSEM analysisthin sectionsdeep learninginstance segmentationPDF DownloadLoading ..." @default.
- W4291750984 created "2022-08-16" @default.
- W4291750984 creator A5064747506 @default.
- W4291750984 creator A5071766835 @default.
- W4291750984 date "2022-08-15" @default.
- W4291750984 modified "2023-09-27" @default.
- W4291750984 title "Using deep learning for automatic detection and segmentation of carbonate microtextures" @default.
- W4291750984 cites W1861492603 @default.
- W4291750984 cites W2013684694 @default.
- W4291750984 cites W2049659474 @default.
- W4291750984 cites W2165698076 @default.
- W4291750984 cites W2168301448 @default.
- W4291750984 cites W2259823555 @default.
- W4291750984 cites W2565639579 @default.
- W4291750984 cites W2902857081 @default.
- W4291750984 cites W2919016321 @default.
- W4291750984 cites W2963150697 @default.
- W4291750984 cites W2981230744 @default.
- W4291750984 cites W2988868065 @default.
- W4291750984 cites W3008125552 @default.
- W4291750984 cites W3036027847 @default.
- W4291750984 cites W3154231331 @default.
- W4291750984 cites W3209216658 @default.
- W4291750984 cites W3212113934 @default.
- W4291750984 cites W4285208947 @default.
- W4291750984 doi "https://doi.org/10.1190/image2022-3751305.1" @default.
- W4291750984 hasPublicationYear "2022" @default.
- W4291750984 type Work @default.
- W4291750984 citedByCount "0" @default.
- W4291750984 crossrefType "proceedings-article" @default.
- W4291750984 hasAuthorship W4291750984A5064747506 @default.
- W4291750984 hasAuthorship W4291750984A5071766835 @default.
- W4291750984 hasConcept C108583219 @default.
- W4291750984 hasConcept C109007969 @default.
- W4291750984 hasConcept C115961682 @default.
- W4291750984 hasConcept C119857082 @default.
- W4291750984 hasConcept C124504099 @default.
- W4291750984 hasConcept C127313418 @default.
- W4291750984 hasConcept C146588470 @default.
- W4291750984 hasConcept C151730666 @default.
- W4291750984 hasConcept C153180895 @default.
- W4291750984 hasConcept C154945302 @default.
- W4291750984 hasConcept C2779343474 @default.
- W4291750984 hasConcept C2780897241 @default.
- W4291750984 hasConcept C41008148 @default.
- W4291750984 hasConcept C50644808 @default.
- W4291750984 hasConcept C81363708 @default.
- W4291750984 hasConcept C89600930 @default.
- W4291750984 hasConcept C99498987 @default.
- W4291750984 hasConceptScore W4291750984C108583219 @default.
- W4291750984 hasConceptScore W4291750984C109007969 @default.
- W4291750984 hasConceptScore W4291750984C115961682 @default.
- W4291750984 hasConceptScore W4291750984C119857082 @default.
- W4291750984 hasConceptScore W4291750984C124504099 @default.
- W4291750984 hasConceptScore W4291750984C127313418 @default.
- W4291750984 hasConceptScore W4291750984C146588470 @default.
- W4291750984 hasConceptScore W4291750984C151730666 @default.
- W4291750984 hasConceptScore W4291750984C153180895 @default.
- W4291750984 hasConceptScore W4291750984C154945302 @default.
- W4291750984 hasConceptScore W4291750984C2779343474 @default.
- W4291750984 hasConceptScore W4291750984C2780897241 @default.
- W4291750984 hasConceptScore W4291750984C41008148 @default.
- W4291750984 hasConceptScore W4291750984C50644808 @default.
- W4291750984 hasConceptScore W4291750984C81363708 @default.
- W4291750984 hasConceptScore W4291750984C89600930 @default.
- W4291750984 hasConceptScore W4291750984C99498987 @default.
- W4291750984 hasLocation W42917509841 @default.
- W4291750984 hasOpenAccess W4291750984 @default.
- W4291750984 hasPrimaryLocation W42917509841 @default.
- W4291750984 hasRelatedWork W2738221750 @default.
- W4291750984 hasRelatedWork W2790662084 @default.
- W4291750984 hasRelatedWork W2948658236 @default.
- W4291750984 hasRelatedWork W3102253946 @default.
- W4291750984 hasRelatedWork W3144574764 @default.
- W4291750984 hasRelatedWork W3156786002 @default.
- W4291750984 hasRelatedWork W4226289457 @default.
- W4291750984 hasRelatedWork W4293211451 @default.
- W4291750984 hasRelatedWork W4308191152 @default.
- W4291750984 hasRelatedWork W4311257506 @default.
- W4291750984 isParatext "false" @default.
- W4291750984 isRetracted "false" @default.
- W4291750984 workType "article" @default.