Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291752846> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4291752846 abstract "PreviousNext No AccessSecond International Meeting for Applied Geoscience & EnergyAutomated hyper-parameter optimization for deep learning framework to simulate boundary conditions for wave propagationAuthors: Harpreet KaurSergey FomelNam PhamHarpreet KaurThe University of Texas at AustinSearch for more papers by this author, Sergey FomelThe University of Texas at AustinSearch for more papers by this author, and Nam PhamThe University of Texas at AustinSearch for more papers by this authorhttps://doi.org/10.1190/image2022-3743090.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractWe propose a hyper-parameter optimization workflow for training the deep learning framework to simulate the effect of boundary conditions for wave propagation. Hyper-parameter selection is a crucial step in model building and has a direct impact on the performance of machine learning models. We implement three different hyper-parameter optimization techniques, namely random search, Hyperband, and Bayesian optimization, for the proposed network to simulate boundary conditions and compare the strengths and drawbacks of these techniques. The automated deep learning framework optimizes network training and significantly improves the efficiency of the workflow. The proposed method reduces human effort in the network tuning process, improves the performance of deep learning models by achieving the optimal minima, makes the model more reproducible, and can be extended to different deep learning based applications. Tests on different models verify the effectiveness of the proposed approach.Keywords: machine learning, wave propagation, boundary conditionsPermalink: https://doi.org/10.1190/image2022-3743090.1FiguresReferencesRelatedDetailsCited byAutomated hyperparameter optimization for simulating boundary conditions for acoustic and elastic wave propagation using deep learningHarpreet Kaur, Sergey Fomel, and Nam Pham5 January 2023 | GEOPHYSICS, Vol. 88, No. 1 Second International Meeting for Applied Geoscience & EnergyISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2022 Pages: 3694 publication data© 2022 Published in electronic format with permission by the Society of Exploration Geophysicists and the American Association of Petroleum GeologistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 15 Aug 2022 CITATION INFORMATION Harpreet Kaur, Sergey Fomel, and Nam Pham, (2022), Automated hyper-parameter optimization for deep learning framework to simulate boundary conditions for wave propagation, SEG Technical Program Expanded Abstracts : 1935-1939. https://doi.org/10.1190/image2022-3743090.1 Plain-Language Summary Keywordsmachine learningwave propagationboundary conditionsPDF DownloadLoading ..." @default.
- W4291752846 created "2022-08-16" @default.
- W4291752846 creator A5002744350 @default.
- W4291752846 creator A5005237932 @default.
- W4291752846 creator A5047852500 @default.
- W4291752846 date "2022-08-15" @default.
- W4291752846 modified "2023-10-16" @default.
- W4291752846 title "Automated hyper-parameter optimization for deep learning framework to simulate boundary conditions for wave propagation" @default.
- W4291752846 cites W1806891645 @default.
- W4291752846 cites W1901129140 @default.
- W4291752846 cites W2069383344 @default.
- W4291752846 cites W2133665775 @default.
- W4291752846 cites W2139305055 @default.
- W4291752846 cites W2174764144 @default.
- W4291752846 cites W2407212869 @default.
- W4291752846 cites W2967612422 @default.
- W4291752846 cites W3045004532 @default.
- W4291752846 cites W3123920941 @default.
- W4291752846 cites W3198142782 @default.
- W4291752846 cites W429766147 @default.
- W4291752846 doi "https://doi.org/10.1190/image2022-3743090.1" @default.
- W4291752846 hasPublicationYear "2022" @default.
- W4291752846 type Work @default.
- W4291752846 citedByCount "1" @default.
- W4291752846 countsByYear W42917528462023 @default.
- W4291752846 crossrefType "proceedings-article" @default.
- W4291752846 hasAuthorship W4291752846A5002744350 @default.
- W4291752846 hasAuthorship W4291752846A5005237932 @default.
- W4291752846 hasAuthorship W4291752846A5047852500 @default.
- W4291752846 hasConcept C108583219 @default.
- W4291752846 hasConcept C11413529 @default.
- W4291752846 hasConcept C119857082 @default.
- W4291752846 hasConcept C134306372 @default.
- W4291752846 hasConcept C154945302 @default.
- W4291752846 hasConcept C155032097 @default.
- W4291752846 hasConcept C164752517 @default.
- W4291752846 hasConcept C186633575 @default.
- W4291752846 hasConcept C2778049539 @default.
- W4291752846 hasConcept C33923547 @default.
- W4291752846 hasConcept C41008148 @default.
- W4291752846 hasConcept C50644808 @default.
- W4291752846 hasConcept C62354387 @default.
- W4291752846 hasConcept C8642999 @default.
- W4291752846 hasConceptScore W4291752846C108583219 @default.
- W4291752846 hasConceptScore W4291752846C11413529 @default.
- W4291752846 hasConceptScore W4291752846C119857082 @default.
- W4291752846 hasConceptScore W4291752846C134306372 @default.
- W4291752846 hasConceptScore W4291752846C154945302 @default.
- W4291752846 hasConceptScore W4291752846C155032097 @default.
- W4291752846 hasConceptScore W4291752846C164752517 @default.
- W4291752846 hasConceptScore W4291752846C186633575 @default.
- W4291752846 hasConceptScore W4291752846C2778049539 @default.
- W4291752846 hasConceptScore W4291752846C33923547 @default.
- W4291752846 hasConceptScore W4291752846C41008148 @default.
- W4291752846 hasConceptScore W4291752846C50644808 @default.
- W4291752846 hasConceptScore W4291752846C62354387 @default.
- W4291752846 hasConceptScore W4291752846C8642999 @default.
- W4291752846 hasLocation W42917528461 @default.
- W4291752846 hasOpenAccess W4291752846 @default.
- W4291752846 hasPrimaryLocation W42917528461 @default.
- W4291752846 hasRelatedWork W3009830345 @default.
- W4291752846 hasRelatedWork W3015462157 @default.
- W4291752846 hasRelatedWork W3199608561 @default.
- W4291752846 hasRelatedWork W4281616679 @default.
- W4291752846 hasRelatedWork W4283697347 @default.
- W4291752846 hasRelatedWork W4287829155 @default.
- W4291752846 hasRelatedWork W4291365775 @default.
- W4291752846 hasRelatedWork W4298144215 @default.
- W4291752846 hasRelatedWork W4307195028 @default.
- W4291752846 hasRelatedWork W4322750901 @default.
- W4291752846 isParatext "false" @default.
- W4291752846 isRetracted "false" @default.
- W4291752846 workType "article" @default.