Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291786770> ?p ?o ?g. }
- W4291786770 abstract "Calibration is a common experimental physics problem, whose goal is to infer the value and uncertainty of an unobservable quantity Z given a measured quantity X. Additionally, one would like to quantify the extent to which X and Z are correlated. In this paper, we present a machine learning framework for performing frequentist maximum likelihood inference with Gaussian uncertainty estimation, which also quantifies the mutual information between the unobservable and measured quantities. This framework uses the Donsker-Varadhan representation of the Kullback-Leibler divergence -- parametrized with a novel Gaussian Ansatz -- to enable a simultaneous extraction of the maximum likelihood values, uncertainties, and mutual information in a single training. We demonstrate our framework by extracting jet energy corrections and resolution factors from a simulation of the CMS detector at the Large Hadron Collider. By leveraging the high-dimensional feature space inside jets, we improve upon the nominal CMS jet resolution by upwards of 15%." @default.
- W4291786770 created "2022-08-16" @default.
- W4291786770 creator A5001078954 @default.
- W4291786770 creator A5051781797 @default.
- W4291786770 creator A5054491740 @default.
- W4291786770 date "2022-08-15" @default.
- W4291786770 modified "2023-10-17" @default.
- W4291786770 title "Learning Uncertainties the Frequentist Way: Calibration and Correlation in High Energy Physics" @default.
- W4291786770 cites W1965555277 @default.
- W4291786770 cites W2108876629 @default.
- W4291786770 cites W2128158076 @default.
- W4291786770 cites W2132343497 @default.
- W4291786770 cites W2144690984 @default.
- W4291786770 cites W2166944917 @default.
- W4291786770 cites W2212901559 @default.
- W4291786770 cites W2258584306 @default.
- W4291786770 cites W2522219598 @default.
- W4291786770 cites W2529728171 @default.
- W4291786770 cites W2604055940 @default.
- W4291786770 cites W2741476055 @default.
- W4291786770 cites W2807595580 @default.
- W4291786770 cites W2896534803 @default.
- W4291786770 cites W2896693058 @default.
- W4291786770 cites W2921141312 @default.
- W4291786770 cites W2952361693 @default.
- W4291786770 cites W2969916257 @default.
- W4291786770 cites W2981346539 @default.
- W4291786770 cites W2998367775 @default.
- W4291786770 cites W3013695373 @default.
- W4291786770 cites W3037464424 @default.
- W4291786770 cites W3041363671 @default.
- W4291786770 cites W3098740531 @default.
- W4291786770 cites W3099529633 @default.
- W4291786770 cites W3100745218 @default.
- W4291786770 cites W3101501459 @default.
- W4291786770 cites W3104569892 @default.
- W4291786770 cites W3105880542 @default.
- W4291786770 cites W3108815066 @default.
- W4291786770 cites W3112618968 @default.
- W4291786770 cites W3121614399 @default.
- W4291786770 cites W3121974422 @default.
- W4291786770 cites W3122181482 @default.
- W4291786770 cites W3122543598 @default.
- W4291786770 cites W3133752370 @default.
- W4291786770 cites W3157277708 @default.
- W4291786770 cites W3157843951 @default.
- W4291786770 cites W3177968063 @default.
- W4291786770 cites W3185395394 @default.
- W4291786770 cites W3190881271 @default.
- W4291786770 cites W3201058294 @default.
- W4291786770 cites W3205390267 @default.
- W4291786770 cites W3205982909 @default.
- W4291786770 cites W4210333294 @default.
- W4291786770 cites W4243316134 @default.
- W4291786770 cites W4249826445 @default.
- W4291786770 cites W4291594996 @default.
- W4291786770 doi "https://doi.org/10.1103/physrevlett.129.082001" @default.
- W4291786770 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36053691" @default.
- W4291786770 hasPublicationYear "2022" @default.
- W4291786770 type Work @default.
- W4291786770 citedByCount "2" @default.
- W4291786770 countsByYear W42917867702022 @default.
- W4291786770 countsByYear W42917867702023 @default.
- W4291786770 crossrefType "journal-article" @default.
- W4291786770 hasAuthorship W4291786770A5001078954 @default.
- W4291786770 hasAuthorship W4291786770A5051781797 @default.
- W4291786770 hasAuthorship W4291786770A5054491740 @default.
- W4291786770 hasBestOaLocation W42917867701 @default.
- W4291786770 hasConcept C107673813 @default.
- W4291786770 hasConcept C109214941 @default.
- W4291786770 hasConcept C119857082 @default.
- W4291786770 hasConcept C121332964 @default.
- W4291786770 hasConcept C121864883 @default.
- W4291786770 hasConcept C149782125 @default.
- W4291786770 hasConcept C152139883 @default.
- W4291786770 hasConcept C154945302 @default.
- W4291786770 hasConcept C160234255 @default.
- W4291786770 hasConcept C162376815 @default.
- W4291786770 hasConcept C163716315 @default.
- W4291786770 hasConcept C165838908 @default.
- W4291786770 hasConcept C2776214188 @default.
- W4291786770 hasConcept C2780695315 @default.
- W4291786770 hasConcept C32230216 @default.
- W4291786770 hasConcept C33923547 @default.
- W4291786770 hasConcept C41008148 @default.
- W4291786770 hasConcept C62520636 @default.
- W4291786770 hasConceptScore W4291786770C107673813 @default.
- W4291786770 hasConceptScore W4291786770C109214941 @default.
- W4291786770 hasConceptScore W4291786770C119857082 @default.
- W4291786770 hasConceptScore W4291786770C121332964 @default.
- W4291786770 hasConceptScore W4291786770C121864883 @default.
- W4291786770 hasConceptScore W4291786770C149782125 @default.
- W4291786770 hasConceptScore W4291786770C152139883 @default.
- W4291786770 hasConceptScore W4291786770C154945302 @default.
- W4291786770 hasConceptScore W4291786770C160234255 @default.
- W4291786770 hasConceptScore W4291786770C162376815 @default.
- W4291786770 hasConceptScore W4291786770C163716315 @default.
- W4291786770 hasConceptScore W4291786770C165838908 @default.
- W4291786770 hasConceptScore W4291786770C2776214188 @default.
- W4291786770 hasConceptScore W4291786770C2780695315 @default.