Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291815114> ?p ?o ?g. }
- W4291815114 abstract "Infertility is a growing global health concern, with male factor infertility contributing to half of all cases. Semen analysis is crucial to infertility diagnostics. However, sperm morphology assessment, as a routine part of analysis, is still performed manually and is thus highly subjective. Here, a stacked ensemble of convolutional neural networks (CNNs) is presented for automated classification of human sperm head morphology. By combining traditional CNN models with modern residual and densely connected architectures using a multi‐class meta‐classifier, classification rate improvements of 2.7% (to 98.2%) and 2.3% (to 63.3%) on the HuSHeM and SCIAN‐MorphoSpermGS (SCIAN) datasets, respectively, are achieved. This considerable improvement in prediction performance is achieved as the meta‐classifier improves upon the individual classification rates of the base models by ≈8.5%. The ensembled deep learning model is a powerful step toward an automated sperm morphology analysis, providing new opportunities to standardize clinical practice and reduce treatment costs to improve patient treatment." @default.
- W4291815114 created "2022-08-16" @default.
- W4291815114 creator A5005327646 @default.
- W4291815114 creator A5038419553 @default.
- W4291815114 creator A5062812734 @default.
- W4291815114 creator A5084788759 @default.
- W4291815114 creator A5087503756 @default.
- W4291815114 date "2022-08-15" @default.
- W4291815114 modified "2023-10-15" @default.
- W4291815114 title "Ensembled Deep Learning for the Classification of Human Sperm Head Morphology" @default.
- W4291815114 cites W127473704 @default.
- W4291815114 cites W1966716734 @default.
- W4291815114 cites W1999238313 @default.
- W4291815114 cites W2000758491 @default.
- W4291815114 cites W2005819646 @default.
- W4291815114 cites W2043974785 @default.
- W4291815114 cites W2092104058 @default.
- W4291815114 cites W2104787607 @default.
- W4291815114 cites W2117539524 @default.
- W4291815114 cites W2117588735 @default.
- W4291815114 cites W2135293965 @default.
- W4291815114 cites W2136408505 @default.
- W4291815114 cites W2142779335 @default.
- W4291815114 cites W2146510892 @default.
- W4291815114 cites W2147452407 @default.
- W4291815114 cites W2165698076 @default.
- W4291815114 cites W2192203593 @default.
- W4291815114 cites W2306570595 @default.
- W4291815114 cites W2419257850 @default.
- W4291815114 cites W2592538491 @default.
- W4291815114 cites W2606915180 @default.
- W4291815114 cites W2625326488 @default.
- W4291815114 cites W2736162018 @default.
- W4291815114 cites W2746369973 @default.
- W4291815114 cites W2763739959 @default.
- W4291815114 cites W2766077972 @default.
- W4291815114 cites W2809254203 @default.
- W4291815114 cites W28412257 @default.
- W4291815114 cites W2888673273 @default.
- W4291815114 cites W2892221324 @default.
- W4291815114 cites W2936503027 @default.
- W4291815114 cites W2941195539 @default.
- W4291815114 cites W2945009381 @default.
- W4291815114 cites W2954602225 @default.
- W4291815114 cites W2955463555 @default.
- W4291815114 cites W2978688014 @default.
- W4291815114 cites W2981207549 @default.
- W4291815114 cites W3024057378 @default.
- W4291815114 cites W3027765088 @default.
- W4291815114 cites W3046792513 @default.
- W4291815114 cites W3104087655 @default.
- W4291815114 cites W3113146014 @default.
- W4291815114 cites W3122321838 @default.
- W4291815114 cites W3160238730 @default.
- W4291815114 cites W3169235367 @default.
- W4291815114 cites W4295688558 @default.
- W4291815114 doi "https://doi.org/10.1002/aisy.202200111" @default.
- W4291815114 hasPublicationYear "2022" @default.
- W4291815114 type Work @default.
- W4291815114 citedByCount "5" @default.
- W4291815114 countsByYear W42918151142023 @default.
- W4291815114 crossrefType "journal-article" @default.
- W4291815114 hasAuthorship W4291815114A5005327646 @default.
- W4291815114 hasAuthorship W4291815114A5038419553 @default.
- W4291815114 hasAuthorship W4291815114A5062812734 @default.
- W4291815114 hasAuthorship W4291815114A5084788759 @default.
- W4291815114 hasAuthorship W4291815114A5087503756 @default.
- W4291815114 hasBestOaLocation W42918151141 @default.
- W4291815114 hasConcept C108583219 @default.
- W4291815114 hasConcept C119857082 @default.
- W4291815114 hasConcept C153180895 @default.
- W4291815114 hasConcept C154945302 @default.
- W4291815114 hasConcept C16685009 @default.
- W4291815114 hasConcept C2777338322 @default.
- W4291815114 hasConcept C2777688143 @default.
- W4291815114 hasConcept C2779234561 @default.
- W4291815114 hasConcept C2781087480 @default.
- W4291815114 hasConcept C41008148 @default.
- W4291815114 hasConcept C54355233 @default.
- W4291815114 hasConcept C71924100 @default.
- W4291815114 hasConcept C81363708 @default.
- W4291815114 hasConcept C86803240 @default.
- W4291815114 hasConcept C95623464 @default.
- W4291815114 hasConceptScore W4291815114C108583219 @default.
- W4291815114 hasConceptScore W4291815114C119857082 @default.
- W4291815114 hasConceptScore W4291815114C153180895 @default.
- W4291815114 hasConceptScore W4291815114C154945302 @default.
- W4291815114 hasConceptScore W4291815114C16685009 @default.
- W4291815114 hasConceptScore W4291815114C2777338322 @default.
- W4291815114 hasConceptScore W4291815114C2777688143 @default.
- W4291815114 hasConceptScore W4291815114C2779234561 @default.
- W4291815114 hasConceptScore W4291815114C2781087480 @default.
- W4291815114 hasConceptScore W4291815114C41008148 @default.
- W4291815114 hasConceptScore W4291815114C54355233 @default.
- W4291815114 hasConceptScore W4291815114C71924100 @default.
- W4291815114 hasConceptScore W4291815114C81363708 @default.
- W4291815114 hasConceptScore W4291815114C86803240 @default.
- W4291815114 hasConceptScore W4291815114C95623464 @default.
- W4291815114 hasFunder F4320334704 @default.
- W4291815114 hasIssue "10" @default.