Matches in SemOpenAlex for { <https://semopenalex.org/work/W4291910562> ?p ?o ?g. }
- W4291910562 endingPage "30073" @default.
- W4291910562 startingPage "30064" @default.
- W4291910562 abstract "(−)-trans-Δ-Tetrahydrocannabinol (THC) is a major psychoactive component in cannabis. Despite the recent trends of THC legalization for medical or recreational use in some areas, many THC-driven impairments have been verified. Therefore, convenient, sensitive, quantitative detection of THC is highly needed to improve its regulation and legalization. We demonstrated a biosensor platform to detect and quantify THC with a paper microfluidic chip and a handheld smartphone-based fluorescence microscope. Microfluidic competitive immunoassay was applied with anti-THC-conjugated fluorescent nanoparticles. The smartphone-based fluorescence microscope counted the fluorescent nanoparticles in the test zone, achieving a 1 pg/mL limit of detection from human saliva samples. Specificity experiments were conducted with cannabidiol (CBD) and various mixtures of THC and CBD. No cross-reactivity to CBD was found. Machine learning techniques were also used to quantify the THC concentrations from multiple saliva samples. Multidimensional data were collected by diluting the saliva samples with saline at four different dilutions. A training database was established to estimate the THC concentration from multiple saliva samples, eliminating the sample-to-sample variations. The classification algorithms included k-nearest neighbor (k-NN), decision tree, and support vector machine (SVM), and the SVM showed the best accuracy of 88% in estimating six different THC concentrations. Additional validation experiments were conducted using independent validation sample sets, successfully identifying positive samples at 100% accuracy and quantifying the THC concentration at 80% accuracy. The platform provided a quick, low-cost, sensitive, and quantitative point-of-care saliva test for cannabis." @default.
- W4291910562 created "2022-08-16" @default.
- W4291910562 creator A5000631784 @default.
- W4291910562 creator A5015226103 @default.
- W4291910562 creator A5043091898 @default.
- W4291910562 date "2022-08-15" @default.
- W4291910562 modified "2023-09-26" @default.
- W4291910562 title "Machine Learning-Based Quantification of (−)-<i>trans</i>-Δ-Tetrahydrocannabinol from Human Saliva Samples on a Smartphone-Based Paper Microfluidic Platform" @default.
- W4291910562 cites W1480376833 @default.
- W4291910562 cites W1483693596 @default.
- W4291910562 cites W1929055273 @default.
- W4291910562 cites W2002431371 @default.
- W4291910562 cites W2025037491 @default.
- W4291910562 cites W2030753546 @default.
- W4291910562 cites W2052590486 @default.
- W4291910562 cites W2098740506 @default.
- W4291910562 cites W2110185331 @default.
- W4291910562 cites W2159814416 @default.
- W4291910562 cites W2168111104 @default.
- W4291910562 cites W2268438447 @default.
- W4291910562 cites W2273038319 @default.
- W4291910562 cites W2502694421 @default.
- W4291910562 cites W2611193362 @default.
- W4291910562 cites W2613735432 @default.
- W4291910562 cites W2619558297 @default.
- W4291910562 cites W2886435164 @default.
- W4291910562 cites W2887923116 @default.
- W4291910562 cites W2895137574 @default.
- W4291910562 cites W2952894493 @default.
- W4291910562 cites W2953698135 @default.
- W4291910562 cites W2972125650 @default.
- W4291910562 cites W3005813628 @default.
- W4291910562 cites W3011593498 @default.
- W4291910562 cites W3025865643 @default.
- W4291910562 cites W3026604541 @default.
- W4291910562 cites W3091554569 @default.
- W4291910562 cites W3092009072 @default.
- W4291910562 cites W3094049194 @default.
- W4291910562 cites W3102208135 @default.
- W4291910562 cites W3129143828 @default.
- W4291910562 cites W3157684853 @default.
- W4291910562 cites W3160286893 @default.
- W4291910562 cites W3165085759 @default.
- W4291910562 cites W3191982151 @default.
- W4291910562 cites W3195386287 @default.
- W4291910562 cites W3214466261 @default.
- W4291910562 cites W4242082761 @default.
- W4291910562 doi "https://doi.org/10.1021/acsomega.2c03099" @default.
- W4291910562 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36061666" @default.
- W4291910562 hasPublicationYear "2022" @default.
- W4291910562 type Work @default.
- W4291910562 citedByCount "3" @default.
- W4291910562 countsByYear W42919105622023 @default.
- W4291910562 crossrefType "journal-article" @default.
- W4291910562 hasAuthorship W4291910562A5000631784 @default.
- W4291910562 hasAuthorship W4291910562A5015226103 @default.
- W4291910562 hasAuthorship W4291910562A5043091898 @default.
- W4291910562 hasBestOaLocation W42919105621 @default.
- W4291910562 hasConcept C118552586 @default.
- W4291910562 hasConcept C119128265 @default.
- W4291910562 hasConcept C12267149 @default.
- W4291910562 hasConcept C154945302 @default.
- W4291910562 hasConcept C185592680 @default.
- W4291910562 hasConcept C2776895053 @default.
- W4291910562 hasConcept C2777056318 @default.
- W4291910562 hasConcept C2909138979 @default.
- W4291910562 hasConcept C41008148 @default.
- W4291910562 hasConcept C43617362 @default.
- W4291910562 hasConcept C504460877 @default.
- W4291910562 hasConcept C55493867 @default.
- W4291910562 hasConcept C71924100 @default.
- W4291910562 hasConceptScore W4291910562C118552586 @default.
- W4291910562 hasConceptScore W4291910562C119128265 @default.
- W4291910562 hasConceptScore W4291910562C12267149 @default.
- W4291910562 hasConceptScore W4291910562C154945302 @default.
- W4291910562 hasConceptScore W4291910562C185592680 @default.
- W4291910562 hasConceptScore W4291910562C2776895053 @default.
- W4291910562 hasConceptScore W4291910562C2777056318 @default.
- W4291910562 hasConceptScore W4291910562C2909138979 @default.
- W4291910562 hasConceptScore W4291910562C41008148 @default.
- W4291910562 hasConceptScore W4291910562C43617362 @default.
- W4291910562 hasConceptScore W4291910562C504460877 @default.
- W4291910562 hasConceptScore W4291910562C55493867 @default.
- W4291910562 hasConceptScore W4291910562C71924100 @default.
- W4291910562 hasFunder F4320310160 @default.
- W4291910562 hasIssue "34" @default.
- W4291910562 hasLocation W42919105621 @default.
- W4291910562 hasLocation W42919105622 @default.
- W4291910562 hasLocation W42919105623 @default.
- W4291910562 hasOpenAccess W4291910562 @default.
- W4291910562 hasPrimaryLocation W42919105621 @default.
- W4291910562 hasRelatedWork W1922614815 @default.
- W4291910562 hasRelatedWork W1972435539 @default.
- W4291910562 hasRelatedWork W2023522714 @default.
- W4291910562 hasRelatedWork W2088902549 @default.
- W4291910562 hasRelatedWork W2221860578 @default.
- W4291910562 hasRelatedWork W2748952813 @default.
- W4291910562 hasRelatedWork W2899084033 @default.