Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292018220> ?p ?o ?g. }
- W4292018220 endingPage "119966" @default.
- W4292018220 startingPage "119966" @default.
- W4292018220 abstract "Carbonaceous aerosols pose significant climatic impact, however, their sources and respective contribution to light absorption vary and remain poorly understood. In this work, filter-based PM2.5 samples were collected in winter of 2021 at three urban sites in Yibin, a fast-growing city in the south of Sichuan Basin, China. The composition characteristics of PM2.5, light absorption and source of carbonaceous aerosol were analyzed. The city-wide average concentration of PM2.5 was 87.4 ± 31.0 μg/m3 in winter. Carbonaceous aerosol was the most abundant species, accounting for 42.5% of the total PM2.5. Source apportionment results showed that vehicular emission was the main source of PM2.5 during winter, contributing 34.6% to PM2.5. The light absorption of black carbon (BC) and brown carbon (BrC) were derived from a simplified two-component model. We apportioned the light absorption of carbonaceous aerosols to BC and BrC using the Least Squares Linear Regression with optimal angstrom absorption exponent of BC (AAEBC). The average absorption of BC and BrC at 405 nm were 51.6 ± 21.5 Mm−1 and 17.7 ± 8.0 Mm−1, respectively, with mean AAEBC = 0.82 ± 0.02. The contribution of BrC to the absorption of carbonaceous reached 26.1% at 405 nm. Based on the PM2.5 source apportionment and the mass absorption cross-section (MAC) value of BrC at 405 nm, vehicle emission was found to be the dominant source of BrC in winter, contributing up to 56.4%. Therefore, vehicle emissions mitigation should be the primary and an effective way to improve atmospheric visibility in this fast-developing city." @default.
- W4292018220 created "2022-08-17" @default.
- W4292018220 creator A5014295844 @default.
- W4292018220 creator A5038756774 @default.
- W4292018220 creator A5043839950 @default.
- W4292018220 creator A5043984773 @default.
- W4292018220 creator A5048276669 @default.
- W4292018220 creator A5051396159 @default.
- W4292018220 creator A5054125069 @default.
- W4292018220 creator A5056759064 @default.
- W4292018220 creator A5062598480 @default.
- W4292018220 creator A5071187797 @default.
- W4292018220 creator A5082223675 @default.
- W4292018220 date "2022-11-01" @default.
- W4292018220 modified "2023-09-29" @default.
- W4292018220 title "Vehicle exhausts contribute high near-UV absorption through carbonaceous aerosol during winter in a fast-growing city of Sichuan Basin, China" @default.
- W4292018220 cites W1985407072 @default.
- W4292018220 cites W1985965824 @default.
- W4292018220 cites W1988591536 @default.
- W4292018220 cites W1990193129 @default.
- W4292018220 cites W1992981622 @default.
- W4292018220 cites W2002020305 @default.
- W4292018220 cites W2008493342 @default.
- W4292018220 cites W2009837182 @default.
- W4292018220 cites W2015910608 @default.
- W4292018220 cites W2016107657 @default.
- W4292018220 cites W2026802068 @default.
- W4292018220 cites W2048160823 @default.
- W4292018220 cites W2049989798 @default.
- W4292018220 cites W2055135627 @default.
- W4292018220 cites W2060324658 @default.
- W4292018220 cites W2062609292 @default.
- W4292018220 cites W2066276587 @default.
- W4292018220 cites W2071162082 @default.
- W4292018220 cites W2080320130 @default.
- W4292018220 cites W2084693817 @default.
- W4292018220 cites W2113836230 @default.
- W4292018220 cites W2118614638 @default.
- W4292018220 cites W2133407350 @default.
- W4292018220 cites W2142903460 @default.
- W4292018220 cites W2145338865 @default.
- W4292018220 cites W2155181163 @default.
- W4292018220 cites W2171765982 @default.
- W4292018220 cites W2195344725 @default.
- W4292018220 cites W2200959273 @default.
- W4292018220 cites W2262273898 @default.
- W4292018220 cites W2302642753 @default.
- W4292018220 cites W2415544265 @default.
- W4292018220 cites W2512042584 @default.
- W4292018220 cites W2581504852 @default.
- W4292018220 cites W2605414336 @default.
- W4292018220 cites W2616554567 @default.
- W4292018220 cites W2738770115 @default.
- W4292018220 cites W2763611025 @default.
- W4292018220 cites W2766545131 @default.
- W4292018220 cites W2790522077 @default.
- W4292018220 cites W2790924823 @default.
- W4292018220 cites W2796071363 @default.
- W4292018220 cites W2800030845 @default.
- W4292018220 cites W2800117066 @default.
- W4292018220 cites W2802609101 @default.
- W4292018220 cites W2808413365 @default.
- W4292018220 cites W2883288412 @default.
- W4292018220 cites W2885945170 @default.
- W4292018220 cites W2888563209 @default.
- W4292018220 cites W2888584474 @default.
- W4292018220 cites W2903682460 @default.
- W4292018220 cites W2906465266 @default.
- W4292018220 cites W2937475331 @default.
- W4292018220 cites W2940661579 @default.
- W4292018220 cites W2964132052 @default.
- W4292018220 cites W2974957539 @default.
- W4292018220 cites W2979483511 @default.
- W4292018220 cites W2989466767 @default.
- W4292018220 cites W2998673164 @default.
- W4292018220 cites W3007836745 @default.
- W4292018220 cites W3011642860 @default.
- W4292018220 cites W3019160344 @default.
- W4292018220 cites W3027806394 @default.
- W4292018220 cites W3033411818 @default.
- W4292018220 cites W3034415263 @default.
- W4292018220 cites W3045714042 @default.
- W4292018220 cites W3093699904 @default.
- W4292018220 cites W3111760687 @default.
- W4292018220 cites W3118291358 @default.
- W4292018220 cites W3134187864 @default.
- W4292018220 cites W3135370708 @default.
- W4292018220 cites W3141484259 @default.
- W4292018220 cites W3168771544 @default.
- W4292018220 cites W3172184409 @default.
- W4292018220 cites W3177546274 @default.
- W4292018220 cites W3195219591 @default.
- W4292018220 cites W3205033263 @default.
- W4292018220 cites W3210345949 @default.
- W4292018220 cites W3214440208 @default.
- W4292018220 doi "https://doi.org/10.1016/j.envpol.2022.119966" @default.
- W4292018220 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35985435" @default.
- W4292018220 hasPublicationYear "2022" @default.