Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292022615> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4292022615 endingPage "112062" @default.
- W4292022615 startingPage "112062" @default.
- W4292022615 abstract "Pitting corrosion is considered to be one of the most dangerous failure forms of offshore steel structures, and corrosion depth is treated as an important indicator of corrosion condition. This paper presents a data-driven model to predict maximum pitting corrosion depth of subsea oil pipelines using the integrated SSA and LSTM approach. LSTM is utilized to learn the relationship between pipeline corrosion depth and its influencing factors. SSA with the strong global search ability and the fast convergence speed is used to optimize hyperparameters of LSTM model to improve its prediction accuracy. A total of 300 samples of maximum pitting corrosion depth of subsea oil pipelines are used to develop the data-driven model. These data are divided into training set and testing set to train and verify the model, respectively. The developed model is compared with LSTM alone and SSA-BP model. The results indicate that SSA-LSTM model performed superior in the prediction accuracy and robustness which evaluation parameters are the smallest values in these models (MAE = 8.84%; RMSE = 0.0607; MSE = 0.36%; MAPE = 9.58%). The developed model can serve as a useful online tool to support the digitalized safety of subsea process systems. • A data-driven model for predicting maximum pitting corrosion depth of marine facilities. • Two methods including SSA and LSTM are integrated. • The model is applied to predict maximum pitting corrosion depth of subsea oil pipelines. • The proposed model can support digitization of marine facilities." @default.
- W4292022615 created "2022-08-17" @default.
- W4292022615 creator A5001577811 @default.
- W4292022615 creator A5018138393 @default.
- W4292022615 creator A5025580900 @default.
- W4292022615 creator A5090300302 @default.
- W4292022615 date "2022-10-01" @default.
- W4292022615 modified "2023-10-16" @default.
- W4292022615 title "A data-driven prediction model for maximum pitting corrosion depth of subsea oil pipelines using SSA-LSTM approach" @default.
- W4292022615 cites W1966918401 @default.
- W4292022615 cites W1967274245 @default.
- W4292022615 cites W1972858886 @default.
- W4292022615 cites W2010565106 @default.
- W4292022615 cites W2047246880 @default.
- W4292022615 cites W2064675550 @default.
- W4292022615 cites W2527460258 @default.
- W4292022615 cites W2901381230 @default.
- W4292022615 cites W2983267094 @default.
- W4292022615 cites W2998553334 @default.
- W4292022615 cites W3033652527 @default.
- W4292022615 cites W3033738186 @default.
- W4292022615 cites W3089630458 @default.
- W4292022615 cites W3102992097 @default.
- W4292022615 cites W3120935587 @default.
- W4292022615 cites W3133043993 @default.
- W4292022615 cites W3186617856 @default.
- W4292022615 cites W3215011231 @default.
- W4292022615 cites W3217308177 @default.
- W4292022615 cites W4200424361 @default.
- W4292022615 cites W4205630678 @default.
- W4292022615 cites W4280629532 @default.
- W4292022615 cites W4281784302 @default.
- W4292022615 cites W435763762 @default.
- W4292022615 cites W791201775 @default.
- W4292022615 doi "https://doi.org/10.1016/j.oceaneng.2022.112062" @default.
- W4292022615 hasPublicationYear "2022" @default.
- W4292022615 type Work @default.
- W4292022615 citedByCount "5" @default.
- W4292022615 countsByYear W42920226152023 @default.
- W4292022615 crossrefType "journal-article" @default.
- W4292022615 hasAuthorship W4292022615A5001577811 @default.
- W4292022615 hasAuthorship W4292022615A5018138393 @default.
- W4292022615 hasAuthorship W4292022615A5025580900 @default.
- W4292022615 hasAuthorship W4292022615A5090300302 @default.
- W4292022615 hasConcept C127313418 @default.
- W4292022615 hasConcept C127413603 @default.
- W4292022615 hasConcept C175309249 @default.
- W4292022615 hasConcept C191897082 @default.
- W4292022615 hasConcept C192562407 @default.
- W4292022615 hasConcept C199104240 @default.
- W4292022615 hasConcept C20625102 @default.
- W4292022615 hasConcept C2777737062 @default.
- W4292022615 hasConcept C2779720300 @default.
- W4292022615 hasConcept C39432304 @default.
- W4292022615 hasConcept C78762247 @default.
- W4292022615 hasConcept C87717796 @default.
- W4292022615 hasConceptScore W4292022615C127313418 @default.
- W4292022615 hasConceptScore W4292022615C127413603 @default.
- W4292022615 hasConceptScore W4292022615C175309249 @default.
- W4292022615 hasConceptScore W4292022615C191897082 @default.
- W4292022615 hasConceptScore W4292022615C192562407 @default.
- W4292022615 hasConceptScore W4292022615C199104240 @default.
- W4292022615 hasConceptScore W4292022615C20625102 @default.
- W4292022615 hasConceptScore W4292022615C2777737062 @default.
- W4292022615 hasConceptScore W4292022615C2779720300 @default.
- W4292022615 hasConceptScore W4292022615C39432304 @default.
- W4292022615 hasConceptScore W4292022615C78762247 @default.
- W4292022615 hasConceptScore W4292022615C87717796 @default.
- W4292022615 hasLocation W42920226151 @default.
- W4292022615 hasOpenAccess W4292022615 @default.
- W4292022615 hasPrimaryLocation W42920226151 @default.
- W4292022615 hasRelatedWork W1917585782 @default.
- W4292022615 hasRelatedWork W200687773 @default.
- W4292022615 hasRelatedWork W2333176313 @default.
- W4292022615 hasRelatedWork W2350345785 @default.
- W4292022615 hasRelatedWork W2374537942 @default.
- W4292022615 hasRelatedWork W2801157177 @default.
- W4292022615 hasRelatedWork W4280539296 @default.
- W4292022615 hasRelatedWork W4312853780 @default.
- W4292022615 hasRelatedWork W4387028395 @default.
- W4292022615 hasRelatedWork W4387639299 @default.
- W4292022615 hasVolume "261" @default.
- W4292022615 isParatext "false" @default.
- W4292022615 isRetracted "false" @default.
- W4292022615 workType "article" @default.