Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292064694> ?p ?o ?g. }
- W4292064694 abstract "Abstract In recent times, the Internet of Things (IoT) and Deep Learning Models (DLMs) can be utilized for developing smart agriculture to determine the exact location of the diseased part of the leaf on farmland in an efficient manner. There is no exception that convolutional neural networks (CNNs) have achieved the latest accomplishment in many aspects of human life and the farming sector. Semantic image segmentation is considered the main problem in computer vision. Despite tremendous progress in applications, approximately all semantic image segmentation algorithms fail to achieve sufficient hash results because of the absence of details sensitivity, problems in assessing the global similarity of image pixels, or both. Methods of post-processing improvement, as a wonderfully critical means of improving the underlying flaws mentioned above from algorithms, depend almost on Conditional Random Fields (CRFs). Therefore, plant disease prediction plays important role in the premature notification of the disease to alleviate its effects on disease forecast investigation purposes in the smart farming arena. Hence, this work proposes an efficient IoT-based plant disease recognition system using semantic segmentation methods such as FCN-8 s, CED-Net, SegNet, DeepLabv3, and U-Net with the CRF method to allocate disease parts in leaf crops. Evaluation of this network and comparison with other networks of the state art. The experimental results and their comparisons proclaim over F1-score, sensitivity, and intersection over union (IoU). The proposed system with SegNet and CRFs gives high results compared with other methods. The superiority and effectiveness of the mentioned improvement method, as well as its range of implementation, are confirmed through experiments." @default.
- W4292064694 created "2022-08-17" @default.
- W4292064694 creator A5008171171 @default.
- W4292064694 creator A5037019550 @default.
- W4292064694 creator A5050772292 @default.
- W4292064694 creator A5051926710 @default.
- W4292064694 creator A5060662713 @default.
- W4292064694 date "2022-08-16" @default.
- W4292064694 modified "2023-10-13" @default.
- W4292064694 title "An Efficient Plant Disease Recognition System Using Hybrid Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs) for Smart IoT Applications in Agriculture" @default.
- W4292064694 cites W1084521104 @default.
- W4292064694 cites W2096945473 @default.
- W4292064694 cites W2112092738 @default.
- W4292064694 cites W2218043766 @default.
- W4292064694 cites W2323226228 @default.
- W4292064694 cites W2475352655 @default.
- W4292064694 cites W2612844455 @default.
- W4292064694 cites W2767767563 @default.
- W4292064694 cites W2784226479 @default.
- W4292064694 cites W2799842361 @default.
- W4292064694 cites W2886985877 @default.
- W4292064694 cites W2912327653 @default.
- W4292064694 cites W2939018547 @default.
- W4292064694 cites W2962748067 @default.
- W4292064694 cites W2967632598 @default.
- W4292064694 cites W2998829203 @default.
- W4292064694 cites W3001553400 @default.
- W4292064694 cites W3089529329 @default.
- W4292064694 cites W3129135322 @default.
- W4292064694 cites W3136021864 @default.
- W4292064694 cites W3161106266 @default.
- W4292064694 cites W3207626552 @default.
- W4292064694 cites W3208572059 @default.
- W4292064694 cites W4210688119 @default.
- W4292064694 cites W4220873574 @default.
- W4292064694 doi "https://doi.org/10.1007/s44196-022-00129-x" @default.
- W4292064694 hasPublicationYear "2022" @default.
- W4292064694 type Work @default.
- W4292064694 citedByCount "5" @default.
- W4292064694 countsByYear W42920646942023 @default.
- W4292064694 crossrefType "journal-article" @default.
- W4292064694 hasAuthorship W4292064694A5008171171 @default.
- W4292064694 hasAuthorship W4292064694A5037019550 @default.
- W4292064694 hasAuthorship W4292064694A5050772292 @default.
- W4292064694 hasAuthorship W4292064694A5051926710 @default.
- W4292064694 hasAuthorship W4292064694A5060662713 @default.
- W4292064694 hasBestOaLocation W42920646941 @default.
- W4292064694 hasConcept C108583219 @default.
- W4292064694 hasConcept C119857082 @default.
- W4292064694 hasConcept C124101348 @default.
- W4292064694 hasConcept C124504099 @default.
- W4292064694 hasConcept C152565575 @default.
- W4292064694 hasConcept C153180895 @default.
- W4292064694 hasConcept C154945302 @default.
- W4292064694 hasConcept C162324750 @default.
- W4292064694 hasConcept C187736073 @default.
- W4292064694 hasConcept C202444582 @default.
- W4292064694 hasConcept C2775953691 @default.
- W4292064694 hasConcept C2779135771 @default.
- W4292064694 hasConcept C2780451532 @default.
- W4292064694 hasConcept C33923547 @default.
- W4292064694 hasConcept C41008148 @default.
- W4292064694 hasConcept C81363708 @default.
- W4292064694 hasConcept C89600930 @default.
- W4292064694 hasConcept C9652623 @default.
- W4292064694 hasConceptScore W4292064694C108583219 @default.
- W4292064694 hasConceptScore W4292064694C119857082 @default.
- W4292064694 hasConceptScore W4292064694C124101348 @default.
- W4292064694 hasConceptScore W4292064694C124504099 @default.
- W4292064694 hasConceptScore W4292064694C152565575 @default.
- W4292064694 hasConceptScore W4292064694C153180895 @default.
- W4292064694 hasConceptScore W4292064694C154945302 @default.
- W4292064694 hasConceptScore W4292064694C162324750 @default.
- W4292064694 hasConceptScore W4292064694C187736073 @default.
- W4292064694 hasConceptScore W4292064694C202444582 @default.
- W4292064694 hasConceptScore W4292064694C2775953691 @default.
- W4292064694 hasConceptScore W4292064694C2779135771 @default.
- W4292064694 hasConceptScore W4292064694C2780451532 @default.
- W4292064694 hasConceptScore W4292064694C33923547 @default.
- W4292064694 hasConceptScore W4292064694C41008148 @default.
- W4292064694 hasConceptScore W4292064694C81363708 @default.
- W4292064694 hasConceptScore W4292064694C89600930 @default.
- W4292064694 hasConceptScore W4292064694C9652623 @default.
- W4292064694 hasIssue "1" @default.
- W4292064694 hasLocation W42920646941 @default.
- W4292064694 hasLocation W42920646942 @default.
- W4292064694 hasOpenAccess W4292064694 @default.
- W4292064694 hasPrimaryLocation W42920646941 @default.
- W4292064694 hasRelatedWork W1803059841 @default.
- W4292064694 hasRelatedWork W1964783010 @default.
- W4292064694 hasRelatedWork W2061834489 @default.
- W4292064694 hasRelatedWork W2399696375 @default.
- W4292064694 hasRelatedWork W2787045460 @default.
- W4292064694 hasRelatedWork W2787080132 @default.
- W4292064694 hasRelatedWork W2943381814 @default.
- W4292064694 hasRelatedWork W2947903144 @default.
- W4292064694 hasRelatedWork W4250494529 @default.
- W4292064694 hasRelatedWork W4285827401 @default.
- W4292064694 hasVolume "15" @default.
- W4292064694 isParatext "false" @default.