Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292079467> ?p ?o ?g. }
- W4292079467 endingPage "119973" @default.
- W4292079467 startingPage "119973" @default.
- W4292079467 abstract "Studies have confirmed that PM10, defined as respirable particles with diameters of 10 μm and smaller, has adverse effects on human health and the environment. Various estimation methods are employed to determine the PM10 concentration using historical data on controlling PM10 air pollution, early warning, and protecting public health and the environment. The present study analyses different Long Short-Term Memory (LSTM) models that can predict hourly PM10 concentration. In parallel, the study also investigates the effectiveness of the data preprocessing and feature selection (DPFS) process on the prediction accuracy of the LSTM models. For this purpose, three different LSTM models, namely Vanilla, Bi-Directional, and Stacked, were developed. Then, a comprehensive data preprocessing stage is used to eliminate missing and erroneous data and outliers from real-world raw data, and a feature selection process is applied to extract unnecessary features. The LSTM models consider three air quality parameters, including SO2, O3, and CO, and three meteorological factors, including relative humidity, wind direction, and wind speed. The prediction performances of the LSTM models are compared using the RMSE, MAE and R2 performance index according to whether DPFS is used in the models or not. As a result, when the DPFS process was applied, the proposed LSTM models achieved high prediction performance and can be used to predict hourly PM10 concentrations. Overall, the DPFS process significantly enhanced the developed LSTM models’ prediction performance. Furthermore, the proposed model might be a useful tool for city administrators to make decisions and improve air quality management efforts." @default.
- W4292079467 created "2022-08-17" @default.
- W4292079467 creator A5013074930 @default.
- W4292079467 creator A5018124183 @default.
- W4292079467 creator A5032672384 @default.
- W4292079467 date "2022-10-01" @default.
- W4292079467 modified "2023-10-11" @default.
- W4292079467 title "Evaluation of data preprocessing and feature selection process for prediction of hourly PM10 concentration using long short-term memory models" @default.
- W4292079467 cites W1194800799 @default.
- W4292079467 cites W1966188114 @default.
- W4292079467 cites W1966794233 @default.
- W4292079467 cites W1969296254 @default.
- W4292079467 cites W1974540239 @default.
- W4292079467 cites W1994796457 @default.
- W4292079467 cites W1996691629 @default.
- W4292079467 cites W2051958479 @default.
- W4292079467 cites W2053374227 @default.
- W4292079467 cites W2060944235 @default.
- W4292079467 cites W2064675550 @default.
- W4292079467 cites W2065489033 @default.
- W4292079467 cites W2104786214 @default.
- W4292079467 cites W2116261113 @default.
- W4292079467 cites W2125425767 @default.
- W4292079467 cites W2135548528 @default.
- W4292079467 cites W2140282454 @default.
- W4292079467 cites W2145212983 @default.
- W4292079467 cites W2146292423 @default.
- W4292079467 cites W2156418615 @default.
- W4292079467 cites W2163614163 @default.
- W4292079467 cites W2171659938 @default.
- W4292079467 cites W2267076517 @default.
- W4292079467 cites W2313363442 @default.
- W4292079467 cites W2522526472 @default.
- W4292079467 cites W2530443992 @default.
- W4292079467 cites W2555700109 @default.
- W4292079467 cites W2754105576 @default.
- W4292079467 cites W2754790542 @default.
- W4292079467 cites W2803892188 @default.
- W4292079467 cites W2899742462 @default.
- W4292079467 cites W2946297768 @default.
- W4292079467 cites W2946446522 @default.
- W4292079467 cites W2955613755 @default.
- W4292079467 cites W2965353672 @default.
- W4292079467 cites W2971724044 @default.
- W4292079467 cites W2975620001 @default.
- W4292079467 cites W2975749068 @default.
- W4292079467 cites W2982277720 @default.
- W4292079467 cites W2988665683 @default.
- W4292079467 cites W3012005648 @default.
- W4292079467 cites W3027059498 @default.
- W4292079467 cites W3165356482 @default.
- W4292079467 cites W4200580405 @default.
- W4292079467 doi "https://doi.org/10.1016/j.envpol.2022.119973" @default.
- W4292079467 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35985430" @default.
- W4292079467 hasPublicationYear "2022" @default.
- W4292079467 type Work @default.
- W4292079467 citedByCount "6" @default.
- W4292079467 countsByYear W42920794672023 @default.
- W4292079467 crossrefType "journal-article" @default.
- W4292079467 hasAuthorship W4292079467A5013074930 @default.
- W4292079467 hasAuthorship W4292079467A5018124183 @default.
- W4292079467 hasAuthorship W4292079467A5032672384 @default.
- W4292079467 hasConcept C10551718 @default.
- W4292079467 hasConcept C105795698 @default.
- W4292079467 hasConcept C111919701 @default.
- W4292079467 hasConcept C119857082 @default.
- W4292079467 hasConcept C121332964 @default.
- W4292079467 hasConcept C124101348 @default.
- W4292079467 hasConcept C126314574 @default.
- W4292079467 hasConcept C138885662 @default.
- W4292079467 hasConcept C139945424 @default.
- W4292079467 hasConcept C148483581 @default.
- W4292079467 hasConcept C153294291 @default.
- W4292079467 hasConcept C154945302 @default.
- W4292079467 hasConcept C161067210 @default.
- W4292079467 hasConcept C2776401178 @default.
- W4292079467 hasConcept C33923547 @default.
- W4292079467 hasConcept C34736171 @default.
- W4292079467 hasConcept C41008148 @default.
- W4292079467 hasConcept C41895202 @default.
- W4292079467 hasConcept C45804977 @default.
- W4292079467 hasConcept C79337645 @default.
- W4292079467 hasConcept C98045186 @default.
- W4292079467 hasConceptScore W4292079467C10551718 @default.
- W4292079467 hasConceptScore W4292079467C105795698 @default.
- W4292079467 hasConceptScore W4292079467C111919701 @default.
- W4292079467 hasConceptScore W4292079467C119857082 @default.
- W4292079467 hasConceptScore W4292079467C121332964 @default.
- W4292079467 hasConceptScore W4292079467C124101348 @default.
- W4292079467 hasConceptScore W4292079467C126314574 @default.
- W4292079467 hasConceptScore W4292079467C138885662 @default.
- W4292079467 hasConceptScore W4292079467C139945424 @default.
- W4292079467 hasConceptScore W4292079467C148483581 @default.
- W4292079467 hasConceptScore W4292079467C153294291 @default.
- W4292079467 hasConceptScore W4292079467C154945302 @default.
- W4292079467 hasConceptScore W4292079467C161067210 @default.
- W4292079467 hasConceptScore W4292079467C2776401178 @default.
- W4292079467 hasConceptScore W4292079467C33923547 @default.