Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292085790> ?p ?o ?g. }
- W4292085790 endingPage "540" @default.
- W4292085790 startingPage "525" @default.
- W4292085790 abstract "The design and control of biological reactors depends upon the correct calibration and selection of kinetic parameters from the exponential phase in the microbial growth. The kinetic microbial parameters that are reported in the literature of biochemical engineering are obtained based on specific growth conditions, which limits their potential application in a wide variety of dynamic models. In this paper, we propose an adaptive machine-learning approach to predict microbial growth, and provide information on the effect that variations of pH and concentration of the culture media have on the growth rate. We study biological reactions and obtain a set of experimental exploratory data using the Pseudomonas aeruginosa (i.e., P. aeruginosa). The versatile and robust metabolism of P. aeruginosa is responsible for its ability to grow in different environment conditions, even at low nutrient and oxygen levels, in a sample range of temperatures (4∘-42∘ C) and polluted sites. Our first contribution is to propose a technique to gather experimental data via measurements of optical density, microbial growth, from the Multiskan™ FC Microplate Photometer, Thermo Scientific. Our second contribution consists of building a surrogate model by successfully adapting the Hyperconic Multilayer Perceptron (HC-MLP), a novel computational and mathematical approach, to predict microbial growth across all the set of conditions of the experimental design. HC-MLP is a state-of-the-art method that is used to define complex non-linear decision boundaries, in the parameters’ space, using a mix of ideas from conformal geometry and neural networks, and focusing on quadratic hyper-surfaces through multiple hidden layers. Consequently, we generate precise surrogates, which can even predict microbial growth in values not evaluated during the experimental stage. Finally, our statistical testing and comparisons validate that the proposed experimental, mathematical and computational framework is robust and capable of predicting the dynamic growth of bacteria P. aeruginosa using two main operation conditions: pH and concentration culture media at pH 7.0. In the future, we plan to apply our proposed methodology to other bacterial strains and advance HC-MLP for forecasting dynamics of other multiple microbial measurements under a wide variety of conditions." @default.
- W4292085790 created "2022-08-17" @default.
- W4292085790 creator A5000045395 @default.
- W4292085790 creator A5008846865 @default.
- W4292085790 creator A5031013344 @default.
- W4292085790 creator A5044953956 @default.
- W4292085790 creator A5045099385 @default.
- W4292085790 date "2022-10-01" @default.
- W4292085790 modified "2023-10-02" @default.
- W4292085790 title "Prediction of microbial growth via the hyperconic neural network approach" @default.
- W4292085790 cites W1493667455 @default.
- W4292085790 cites W1873993935 @default.
- W4292085790 cites W1946589712 @default.
- W4292085790 cites W1976029918 @default.
- W4292085790 cites W1989420467 @default.
- W4292085790 cites W2002987592 @default.
- W4292085790 cites W2004696110 @default.
- W4292085790 cites W2004790742 @default.
- W4292085790 cites W2018130527 @default.
- W4292085790 cites W2034928177 @default.
- W4292085790 cites W2036107121 @default.
- W4292085790 cites W2053027903 @default.
- W4292085790 cites W2065645188 @default.
- W4292085790 cites W2073247300 @default.
- W4292085790 cites W2080483592 @default.
- W4292085790 cites W2089171530 @default.
- W4292085790 cites W2102276112 @default.
- W4292085790 cites W2113606869 @default.
- W4292085790 cites W2123578446 @default.
- W4292085790 cites W2133836318 @default.
- W4292085790 cites W2140383128 @default.
- W4292085790 cites W2140885475 @default.
- W4292085790 cites W2151304477 @default.
- W4292085790 cites W2168648059 @default.
- W4292085790 cites W2191505017 @default.
- W4292085790 cites W2282554183 @default.
- W4292085790 cites W2420994023 @default.
- W4292085790 cites W2553474544 @default.
- W4292085790 cites W2575269182 @default.
- W4292085790 cites W2773972711 @default.
- W4292085790 cites W2791323937 @default.
- W4292085790 cites W2793335889 @default.
- W4292085790 cites W2795889423 @default.
- W4292085790 cites W2890985374 @default.
- W4292085790 cites W2898280479 @default.
- W4292085790 cites W2906353349 @default.
- W4292085790 cites W2922986798 @default.
- W4292085790 cites W2988260234 @default.
- W4292085790 cites W2991540580 @default.
- W4292085790 cites W3037577459 @default.
- W4292085790 cites W3039217629 @default.
- W4292085790 cites W3093024038 @default.
- W4292085790 cites W3130466700 @default.
- W4292085790 cites W3135506815 @default.
- W4292085790 cites W3148334911 @default.
- W4292085790 cites W3161553155 @default.
- W4292085790 cites W3162278734 @default.
- W4292085790 cites W3163642729 @default.
- W4292085790 cites W3168536162 @default.
- W4292085790 cites W3183043359 @default.
- W4292085790 cites W3209257975 @default.
- W4292085790 cites W4205909230 @default.
- W4292085790 cites W4220962270 @default.
- W4292085790 cites W4224286679 @default.
- W4292085790 doi "https://doi.org/10.1016/j.cherd.2022.08.021" @default.
- W4292085790 hasPublicationYear "2022" @default.
- W4292085790 type Work @default.
- W4292085790 citedByCount "1" @default.
- W4292085790 countsByYear W42920857902022 @default.
- W4292085790 crossrefType "journal-article" @default.
- W4292085790 hasAuthorship W4292085790A5000045395 @default.
- W4292085790 hasAuthorship W4292085790A5008846865 @default.
- W4292085790 hasAuthorship W4292085790A5031013344 @default.
- W4292085790 hasAuthorship W4292085790A5044953956 @default.
- W4292085790 hasAuthorship W4292085790A5045099385 @default.
- W4292085790 hasBestOaLocation W42920857901 @default.
- W4292085790 hasConcept C105795698 @default.
- W4292085790 hasConcept C119857082 @default.
- W4292085790 hasConcept C127413603 @default.
- W4292085790 hasConcept C134306372 @default.
- W4292085790 hasConcept C17741926 @default.
- W4292085790 hasConcept C179717631 @default.
- W4292085790 hasConcept C183696295 @default.
- W4292085790 hasConcept C186060115 @default.
- W4292085790 hasConcept C33923547 @default.
- W4292085790 hasConcept C34559072 @default.
- W4292085790 hasConcept C41008148 @default.
- W4292085790 hasConcept C50644808 @default.
- W4292085790 hasConcept C523546767 @default.
- W4292085790 hasConcept C54355233 @default.
- W4292085790 hasConcept C75235859 @default.
- W4292085790 hasConcept C86803240 @default.
- W4292085790 hasConceptScore W4292085790C105795698 @default.
- W4292085790 hasConceptScore W4292085790C119857082 @default.
- W4292085790 hasConceptScore W4292085790C127413603 @default.
- W4292085790 hasConceptScore W4292085790C134306372 @default.
- W4292085790 hasConceptScore W4292085790C17741926 @default.
- W4292085790 hasConceptScore W4292085790C179717631 @default.