Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292103247> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4292103247 abstract "Jannsen asked whether the rational cycle class map in continuous $ell$-adic cohomology is injective, in every codimension for all smooth projective varieties over a field of finite type over the prime field. As recently pointed out by Schreieder, the integral version of Jannsen's question is also of interest. We exhibit several examples showing that the answer to the integral version is negative in general. Our examples also have consequences for the coniveau filtration on Chow groups and the transcendental Abel-Jacobi map constructed by Schreieder." @default.
- W4292103247 created "2022-08-17" @default.
- W4292103247 creator A5059505346 @default.
- W4292103247 creator A5084214689 @default.
- W4292103247 date "2022-08-13" @default.
- W4292103247 modified "2023-09-30" @default.
- W4292103247 title "Non-injectivity of the cycle class map in continuous $ell$-adic cohomology" @default.
- W4292103247 doi "https://doi.org/10.48550/arxiv.2208.06713" @default.
- W4292103247 hasPublicationYear "2022" @default.
- W4292103247 type Work @default.
- W4292103247 citedByCount "0" @default.
- W4292103247 crossrefType "posted-content" @default.
- W4292103247 hasAuthorship W4292103247A5059505346 @default.
- W4292103247 hasAuthorship W4292103247A5084214689 @default.
- W4292103247 hasBestOaLocation W42921032471 @default.
- W4292103247 hasConcept C128107574 @default.
- W4292103247 hasConcept C128489963 @default.
- W4292103247 hasConcept C134306372 @default.
- W4292103247 hasConcept C136119220 @default.
- W4292103247 hasConcept C154945302 @default.
- W4292103247 hasConcept C188370112 @default.
- W4292103247 hasConcept C18903297 @default.
- W4292103247 hasConcept C202444582 @default.
- W4292103247 hasConcept C2777212361 @default.
- W4292103247 hasConcept C2777299769 @default.
- W4292103247 hasConcept C33923547 @default.
- W4292103247 hasConcept C41008148 @default.
- W4292103247 hasConcept C78606066 @default.
- W4292103247 hasConcept C83979697 @default.
- W4292103247 hasConcept C86803240 @default.
- W4292103247 hasConcept C9652623 @default.
- W4292103247 hasConceptScore W4292103247C128107574 @default.
- W4292103247 hasConceptScore W4292103247C128489963 @default.
- W4292103247 hasConceptScore W4292103247C134306372 @default.
- W4292103247 hasConceptScore W4292103247C136119220 @default.
- W4292103247 hasConceptScore W4292103247C154945302 @default.
- W4292103247 hasConceptScore W4292103247C188370112 @default.
- W4292103247 hasConceptScore W4292103247C18903297 @default.
- W4292103247 hasConceptScore W4292103247C202444582 @default.
- W4292103247 hasConceptScore W4292103247C2777212361 @default.
- W4292103247 hasConceptScore W4292103247C2777299769 @default.
- W4292103247 hasConceptScore W4292103247C33923547 @default.
- W4292103247 hasConceptScore W4292103247C41008148 @default.
- W4292103247 hasConceptScore W4292103247C78606066 @default.
- W4292103247 hasConceptScore W4292103247C83979697 @default.
- W4292103247 hasConceptScore W4292103247C86803240 @default.
- W4292103247 hasConceptScore W4292103247C9652623 @default.
- W4292103247 hasLocation W42921032471 @default.
- W4292103247 hasOpenAccess W4292103247 @default.
- W4292103247 hasPrimaryLocation W42921032471 @default.
- W4292103247 hasRelatedWork W1504467367 @default.
- W4292103247 hasRelatedWork W1964300020 @default.
- W4292103247 hasRelatedWork W2060436835 @default.
- W4292103247 hasRelatedWork W2066789121 @default.
- W4292103247 hasRelatedWork W2082002585 @default.
- W4292103247 hasRelatedWork W2795929794 @default.
- W4292103247 hasRelatedWork W2963335075 @default.
- W4292103247 hasRelatedWork W3135853625 @default.
- W4292103247 hasRelatedWork W4287284920 @default.
- W4292103247 hasRelatedWork W2102838281 @default.
- W4292103247 isParatext "false" @default.
- W4292103247 isRetracted "false" @default.
- W4292103247 workType "article" @default.