Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292103266> ?p ?o ?g. }
- W4292103266 endingPage "125187" @default.
- W4292103266 startingPage "125187" @default.
- W4292103266 abstract "The multi energy system (MES) is promising in the process of carbon neutrality, such that multi energy resources are utilized comprehensively to reduce the operation cost. Another way is to promote carbon neutrality by increasing the penetration of renewable energy. Hence, in this paper, we study the energy management of a typical MES under the challenges of stochastic renewable supplies and energy demands. To address the challenges, a stochastic optimization problem is established as a Markov decision process (MDP). An improved deep reinforcement learning (DRL) method is then developed to achieve the dynamic optimal energy dispatch. In particular, the comfort experience of users and complex coupling are both considered in the MES. In this framework, we propose an improved soft actor critic (SAC) algorithm based on maximum entropy to improve exploration ability, together with a long short-term memory (LSTM) network to extract temporal features efficiently. Meanwhile, we add the prioritized experience replay (PER) to increase the training efficiency to speed up the convergence of the algorithm. Finally, the case study demonstrates that the proposed algorithm can converge rapidly and greatly reduce the operation cost. In addition, the effectiveness and robustness of the improved method are verified." @default.
- W4292103266 created "2022-08-17" @default.
- W4292103266 creator A5035188278 @default.
- W4292103266 creator A5062121176 @default.
- W4292103266 creator A5062327261 @default.
- W4292103266 creator A5073256902 @default.
- W4292103266 date "2022-12-01" @default.
- W4292103266 modified "2023-10-13" @default.
- W4292103266 title "Data-driven stochastic energy management of multi energy system using deep reinforcement learning" @default.
- W4292103266 cites W2080048739 @default.
- W4292103266 cites W2132075088 @default.
- W4292103266 cites W2594517314 @default.
- W4292103266 cites W2731682877 @default.
- W4292103266 cites W2767897971 @default.
- W4292103266 cites W2776677120 @default.
- W4292103266 cites W2795578496 @default.
- W4292103266 cites W2893951687 @default.
- W4292103266 cites W2911256795 @default.
- W4292103266 cites W2914098925 @default.
- W4292103266 cites W2952242647 @default.
- W4292103266 cites W2952326029 @default.
- W4292103266 cites W2955610150 @default.
- W4292103266 cites W2979897999 @default.
- W4292103266 cites W2997147307 @default.
- W4292103266 cites W2998186469 @default.
- W4292103266 cites W3008495688 @default.
- W4292103266 cites W3009627930 @default.
- W4292103266 cites W3034055718 @default.
- W4292103266 cites W3035301282 @default.
- W4292103266 cites W3036976475 @default.
- W4292103266 cites W3045903486 @default.
- W4292103266 cites W3046927265 @default.
- W4292103266 cites W3064425062 @default.
- W4292103266 cites W3080521887 @default.
- W4292103266 cites W3091890503 @default.
- W4292103266 cites W3096457036 @default.
- W4292103266 cites W3114001665 @default.
- W4292103266 cites W3122713754 @default.
- W4292103266 cites W3128363455 @default.
- W4292103266 cites W3163169408 @default.
- W4292103266 cites W3168289825 @default.
- W4292103266 cites W3176365003 @default.
- W4292103266 cites W3176946650 @default.
- W4292103266 cites W3179338786 @default.
- W4292103266 cites W3180409751 @default.
- W4292103266 cites W3193977437 @default.
- W4292103266 cites W3196203118 @default.
- W4292103266 cites W3196351275 @default.
- W4292103266 cites W3198340210 @default.
- W4292103266 cites W3198469450 @default.
- W4292103266 cites W3199505082 @default.
- W4292103266 cites W3199624866 @default.
- W4292103266 cites W3201678476 @default.
- W4292103266 cites W3201912498 @default.
- W4292103266 cites W3205884499 @default.
- W4292103266 cites W3210259472 @default.
- W4292103266 cites W3211551833 @default.
- W4292103266 cites W4200270064 @default.
- W4292103266 cites W4213154485 @default.
- W4292103266 cites W4280629298 @default.
- W4292103266 doi "https://doi.org/10.1016/j.energy.2022.125187" @default.
- W4292103266 hasPublicationYear "2022" @default.
- W4292103266 type Work @default.
- W4292103266 citedByCount "13" @default.
- W4292103266 countsByYear W42921032662022 @default.
- W4292103266 countsByYear W42921032662023 @default.
- W4292103266 crossrefType "journal-article" @default.
- W4292103266 hasAuthorship W4292103266A5035188278 @default.
- W4292103266 hasAuthorship W4292103266A5062121176 @default.
- W4292103266 hasAuthorship W4292103266A5062327261 @default.
- W4292103266 hasAuthorship W4292103266A5073256902 @default.
- W4292103266 hasConcept C104317684 @default.
- W4292103266 hasConcept C105795698 @default.
- W4292103266 hasConcept C106189395 @default.
- W4292103266 hasConcept C119599485 @default.
- W4292103266 hasConcept C126255220 @default.
- W4292103266 hasConcept C127413603 @default.
- W4292103266 hasConcept C154945302 @default.
- W4292103266 hasConcept C159886148 @default.
- W4292103266 hasConcept C162324750 @default.
- W4292103266 hasConcept C185592680 @default.
- W4292103266 hasConcept C186370098 @default.
- W4292103266 hasConcept C188573790 @default.
- W4292103266 hasConcept C2777303404 @default.
- W4292103266 hasConcept C33923547 @default.
- W4292103266 hasConcept C41008148 @default.
- W4292103266 hasConcept C50522688 @default.
- W4292103266 hasConcept C55493867 @default.
- W4292103266 hasConcept C63479239 @default.
- W4292103266 hasConcept C7817414 @default.
- W4292103266 hasConcept C97541855 @default.
- W4292103266 hasConceptScore W4292103266C104317684 @default.
- W4292103266 hasConceptScore W4292103266C105795698 @default.
- W4292103266 hasConceptScore W4292103266C106189395 @default.
- W4292103266 hasConceptScore W4292103266C119599485 @default.
- W4292103266 hasConceptScore W4292103266C126255220 @default.
- W4292103266 hasConceptScore W4292103266C127413603 @default.
- W4292103266 hasConceptScore W4292103266C154945302 @default.