Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292121883> ?p ?o ?g. }
- W4292121883 abstract "Abstract Clinical decision support systems based on machine-learning algorithms are largely applied in the context of the diagnosis of neurodegenerative diseases (NDDs). While recent models yield robust classifications in supervised two classes-problems accurately separating Parkinson’s disease (PD) from healthy control (HC) subjects, few works looked at prodromal stages of NDDs. Idiopathic Rapid-eye Movement (REM) sleep behavior disorder (iRBD) is considered a prodromal stage of PD with a high chance of phenoconversion but with heterogeneous symptoms that hinder accurate disease prediction. Machine learning (ML) based methods can be used to develop personalized trajectory models, but these require large amounts of observational points with homogenous features significantly reducing the possible imaging modalities to non-invasive and cost-effective techniques such as high-density electrophysiology (hdEEG). In this work, we aimed at quantifying the increase in accuracy and robustness of the classification model with the inclusion of network-based metrics compared to the classical Fourier-based power spectral density (PSD). We performed a series of analyses to quantify significance in cohort-wise metrics, the performance of classification tasks, and the effect of feature selection on model accuracy. We report that amplitude correlation spectral profiles show the largest difference between iRBD and HC subjects mainly in delta and theta bands. Moreover, the inclusion of amplitude correlation and phase synchronization improves the classification performance by up to 11% compared to using PSD alone. Our results show that hdEEG features alone can be used as potential biomarkers in classification problems using iRBD data and that large-scale network metrics improve the performance of the model. This evidence suggests that large-scale brain network metrics should be considered important tools for investigating prodromal stages of NDD as they yield more information without harming the patient, allowing for constant and frequent longitudinal evaluation of patients at high risk of phenoconversion. Highlights Network-based features are important tools to investigate prodromal stages of PD Amplitude correlation shows the largest difference between two groups in 9/30 bands Amplitude correlation improved up to 11% the performance compared to PSD alone Classification robustness increases when we use both network-based EEG features Classifier performance worsens when PSD is added to network-based EEG features" @default.
- W4292121883 created "2022-08-17" @default.
- W4292121883 creator A5003964675 @default.
- W4292121883 creator A5042710338 @default.
- W4292121883 creator A5045078749 @default.
- W4292121883 creator A5045568861 @default.
- W4292121883 creator A5049564203 @default.
- W4292121883 creator A5053092854 @default.
- W4292121883 creator A5079909253 @default.
- W4292121883 creator A5083708156 @default.
- W4292121883 date "2022-08-17" @default.
- W4292121883 modified "2023-10-18" @default.
- W4292121883 title "Large-scale network metrics improve the classification performance of rapid-eye-movement sleep behavior disorder patients" @default.
- W4292121883 cites W1527468221 @default.
- W4292121883 cites W1902335101 @default.
- W4292121883 cites W1915357529 @default.
- W4292121883 cites W1966641148 @default.
- W4292121883 cites W1967268617 @default.
- W4292121883 cites W1974554864 @default.
- W4292121883 cites W1988949556 @default.
- W4292121883 cites W1997169200 @default.
- W4292121883 cites W2019885188 @default.
- W4292121883 cites W2025132602 @default.
- W4292121883 cites W2040149530 @default.
- W4292121883 cites W2088633905 @default.
- W4292121883 cites W2092685533 @default.
- W4292121883 cites W2127389037 @default.
- W4292121883 cites W2131943911 @default.
- W4292121883 cites W2146288660 @default.
- W4292121883 cites W2163166459 @default.
- W4292121883 cites W2290432223 @default.
- W4292121883 cites W2509382533 @default.
- W4292121883 cites W2606935699 @default.
- W4292121883 cites W2768920954 @default.
- W4292121883 cites W2789064964 @default.
- W4292121883 cites W2917107887 @default.
- W4292121883 cites W2981766199 @default.
- W4292121883 cites W2993516307 @default.
- W4292121883 cites W3004842317 @default.
- W4292121883 cites W3016025808 @default.
- W4292121883 cites W3048731797 @default.
- W4292121883 cites W3107699554 @default.
- W4292121883 cites W3117271050 @default.
- W4292121883 cites W3138729332 @default.
- W4292121883 cites W3186052749 @default.
- W4292121883 cites W4205936447 @default.
- W4292121883 cites W4247128285 @default.
- W4292121883 cites W1633885051 @default.
- W4292121883 doi "https://doi.org/10.1101/2022.08.16.504129" @default.
- W4292121883 hasPublicationYear "2022" @default.
- W4292121883 type Work @default.
- W4292121883 citedByCount "1" @default.
- W4292121883 countsByYear W42921218832023 @default.
- W4292121883 crossrefType "posted-content" @default.
- W4292121883 hasAuthorship W4292121883A5003964675 @default.
- W4292121883 hasAuthorship W4292121883A5042710338 @default.
- W4292121883 hasAuthorship W4292121883A5045078749 @default.
- W4292121883 hasAuthorship W4292121883A5045568861 @default.
- W4292121883 hasAuthorship W4292121883A5049564203 @default.
- W4292121883 hasAuthorship W4292121883A5053092854 @default.
- W4292121883 hasAuthorship W4292121883A5079909253 @default.
- W4292121883 hasAuthorship W4292121883A5083708156 @default.
- W4292121883 hasBestOaLocation W42921218831 @default.
- W4292121883 hasConcept C117220453 @default.
- W4292121883 hasConcept C118552586 @default.
- W4292121883 hasConcept C119857082 @default.
- W4292121883 hasConcept C148483581 @default.
- W4292121883 hasConcept C153180895 @default.
- W4292121883 hasConcept C154945302 @default.
- W4292121883 hasConcept C15744967 @default.
- W4292121883 hasConcept C2524010 @default.
- W4292121883 hasConcept C2776132596 @default.
- W4292121883 hasConcept C2778205975 @default.
- W4292121883 hasConcept C33923547 @default.
- W4292121883 hasConcept C41008148 @default.
- W4292121883 hasConcept C522805319 @default.
- W4292121883 hasConceptScore W4292121883C117220453 @default.
- W4292121883 hasConceptScore W4292121883C118552586 @default.
- W4292121883 hasConceptScore W4292121883C119857082 @default.
- W4292121883 hasConceptScore W4292121883C148483581 @default.
- W4292121883 hasConceptScore W4292121883C153180895 @default.
- W4292121883 hasConceptScore W4292121883C154945302 @default.
- W4292121883 hasConceptScore W4292121883C15744967 @default.
- W4292121883 hasConceptScore W4292121883C2524010 @default.
- W4292121883 hasConceptScore W4292121883C2776132596 @default.
- W4292121883 hasConceptScore W4292121883C2778205975 @default.
- W4292121883 hasConceptScore W4292121883C33923547 @default.
- W4292121883 hasConceptScore W4292121883C41008148 @default.
- W4292121883 hasConceptScore W4292121883C522805319 @default.
- W4292121883 hasLocation W42921218831 @default.
- W4292121883 hasOpenAccess W4292121883 @default.
- W4292121883 hasPrimaryLocation W42921218831 @default.
- W4292121883 hasRelatedWork W2316780152 @default.
- W4292121883 hasRelatedWork W2961085424 @default.
- W4292121883 hasRelatedWork W3087493185 @default.
- W4292121883 hasRelatedWork W3200179079 @default.
- W4292121883 hasRelatedWork W4286629047 @default.
- W4292121883 hasRelatedWork W4293525103 @default.
- W4292121883 hasRelatedWork W4306321456 @default.
- W4292121883 hasRelatedWork W4306674287 @default.