Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292158059> ?p ?o ?g. }
- W4292158059 endingPage "100078" @default.
- W4292158059 startingPage "100078" @default.
- W4292158059 abstract "COVID-19 has caused negative impacts on blood supply chain management, due to uncertain supply/demand and logistical disruptions. In the early weeks following the COVID-19 pandemic, 20–30% reduction in blood donation had observed, which adversely affected the whole blood supply chain. Although this shortage was partially compensated through rescheduling of elective surgeries and shifting some inpatient surgeries to outpatient surgeries, resumption of the normal surgeries by hospitals had increased the demands for the blood products. At the same time, the total blood supply was increased by some measures taken to overcome the blood shortage. In this paper, a multivariate time-series deep learning model based on long short-term memory is proposed to forecast the blood donation/demand. It takes daily time-series of blood donation/demand (internal features) as well as daily time-series of new confirmed COVID-19 cases/deaths (external features) as its inputs, and predicts blood donation/demand for the next week. The proposed model is used to achieve a resilient blood inventory management, capable of handling the uncertainties occurring during the COVID-19 pandemic. The proposed blood donation/demand forecasting model has been successfully simulated on the collected data of Tehran Blood Center in Tehran, Iran, for a time period from February 24, 2020, to October 14, 2021. Obtained results show the efficiency of the proposed model by obtaining 6.1% and 6.5% error between the actual and forecasted values of the number of donations and demands, respectively. The results of applying the proposed model for inventory management of blood platelets demonstrate the resiliency of our model to reduce shortage and wastage rates against the existing uncertainty handling models by 32.1% and 26.6%, respectively. The proposed method can be used to assist the decision makers in managing the blood supply chains through prioritizing the blood transfusions during COVID-19 and similar pandemics in the future." @default.
- W4292158059 created "2022-08-18" @default.
- W4292158059 creator A5002859484 @default.
- W4292158059 creator A5048004042 @default.
- W4292158059 date "2022-12-01" @default.
- W4292158059 modified "2023-09-30" @default.
- W4292158059 title "Multivariate time-series blood donation/demand forecasting for resilient supply chain management during COVID-19 pandemic" @default.
- W4292158059 cites W2064675550 @default.
- W4292158059 cites W2921507345 @default.
- W4292158059 cites W3012092087 @default.
- W4292158059 cites W3013017333 @default.
- W4292158059 cites W3019931599 @default.
- W4292158059 cites W3033487584 @default.
- W4292158059 cites W3038666035 @default.
- W4292158059 cites W3039205603 @default.
- W4292158059 cites W3039544106 @default.
- W4292158059 cites W3042433523 @default.
- W4292158059 cites W3047907463 @default.
- W4292158059 cites W3089504257 @default.
- W4292158059 cites W3095696206 @default.
- W4292158059 cites W3099842405 @default.
- W4292158059 cites W3107346147 @default.
- W4292158059 cites W3113265756 @default.
- W4292158059 cites W3123633719 @default.
- W4292158059 cites W3127160821 @default.
- W4292158059 cites W3127453621 @default.
- W4292158059 cites W3128709062 @default.
- W4292158059 cites W3130629190 @default.
- W4292158059 cites W3139511250 @default.
- W4292158059 cites W3148636313 @default.
- W4292158059 cites W3159754351 @default.
- W4292158059 cites W3165537959 @default.
- W4292158059 cites W3168994584 @default.
- W4292158059 cites W3176966546 @default.
- W4292158059 cites W3177766308 @default.
- W4292158059 cites W3181153667 @default.
- W4292158059 cites W3192533825 @default.
- W4292158059 cites W3201568829 @default.
- W4292158059 cites W3205708425 @default.
- W4292158059 cites W4200381361 @default.
- W4292158059 cites W4200461742 @default.
- W4292158059 cites W4206364549 @default.
- W4292158059 cites W4207060274 @default.
- W4292158059 cites W4220715407 @default.
- W4292158059 cites W4225310696 @default.
- W4292158059 doi "https://doi.org/10.1016/j.clscn.2022.100078" @default.
- W4292158059 hasPublicationYear "2022" @default.
- W4292158059 type Work @default.
- W4292158059 citedByCount "19" @default.
- W4292158059 countsByYear W42921580592022 @default.
- W4292158059 countsByYear W42921580592023 @default.
- W4292158059 crossrefType "journal-article" @default.
- W4292158059 hasAuthorship W4292158059A5002859484 @default.
- W4292158059 hasAuthorship W4292158059A5048004042 @default.
- W4292158059 hasBestOaLocation W42921580591 @default.
- W4292158059 hasConcept C105795698 @default.
- W4292158059 hasConcept C108713360 @default.
- W4292158059 hasConcept C126322002 @default.
- W4292158059 hasConcept C138885662 @default.
- W4292158059 hasConcept C141071460 @default.
- W4292158059 hasConcept C144133560 @default.
- W4292158059 hasConcept C161584116 @default.
- W4292158059 hasConcept C162324750 @default.
- W4292158059 hasConcept C162853370 @default.
- W4292158059 hasConcept C194051981 @default.
- W4292158059 hasConcept C194828623 @default.
- W4292158059 hasConcept C21547014 @default.
- W4292158059 hasConcept C2775933685 @default.
- W4292158059 hasConcept C2778137410 @default.
- W4292158059 hasConcept C2779134260 @default.
- W4292158059 hasConcept C2993270971 @default.
- W4292158059 hasConcept C3008058167 @default.
- W4292158059 hasConcept C33923547 @default.
- W4292158059 hasConcept C41895202 @default.
- W4292158059 hasConcept C50522688 @default.
- W4292158059 hasConcept C524204448 @default.
- W4292158059 hasConcept C71924100 @default.
- W4292158059 hasConcept C89623803 @default.
- W4292158059 hasConceptScore W4292158059C105795698 @default.
- W4292158059 hasConceptScore W4292158059C108713360 @default.
- W4292158059 hasConceptScore W4292158059C126322002 @default.
- W4292158059 hasConceptScore W4292158059C138885662 @default.
- W4292158059 hasConceptScore W4292158059C141071460 @default.
- W4292158059 hasConceptScore W4292158059C144133560 @default.
- W4292158059 hasConceptScore W4292158059C161584116 @default.
- W4292158059 hasConceptScore W4292158059C162324750 @default.
- W4292158059 hasConceptScore W4292158059C162853370 @default.
- W4292158059 hasConceptScore W4292158059C194051981 @default.
- W4292158059 hasConceptScore W4292158059C194828623 @default.
- W4292158059 hasConceptScore W4292158059C21547014 @default.
- W4292158059 hasConceptScore W4292158059C2775933685 @default.
- W4292158059 hasConceptScore W4292158059C2778137410 @default.
- W4292158059 hasConceptScore W4292158059C2779134260 @default.
- W4292158059 hasConceptScore W4292158059C2993270971 @default.
- W4292158059 hasConceptScore W4292158059C3008058167 @default.
- W4292158059 hasConceptScore W4292158059C33923547 @default.
- W4292158059 hasConceptScore W4292158059C41895202 @default.
- W4292158059 hasConceptScore W4292158059C50522688 @default.