Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292167218> ?p ?o ?g. }
- W4292167218 endingPage "842" @default.
- W4292167218 startingPage "821" @default.
- W4292167218 abstract "Monitoring of the photosynthetic activity of natural and artificial biocenoses is of crucial importance. Photosynthesis is the basis for the existence of life on Earth, and a decrease in primary photosynthetic production due to anthropogenic influences can have catastrophic consequences. Currently, great efforts are being made to create technologies that allow continuous monitoring of the state of the photosynthetic apparatus of terrestrial plants and microalgae. There are several sources of information suitable for assessing photosynthetic activity, including gas exchange and optical (reflectance and fluorescence) measurements. The advent of inexpensive optical sensors makes it possible to collect data locally (manually or using autonomous sea and land stations) and globally (using aircraft and satellite imaging). In this review, we consider machine learning methods proposed for determining the functional parameters of photosynthesis based on local and remote optical measurements (hyperspectral imaging, solar-induced chlorophyll fluorescence, local chlorophyll fluorescence imaging, and various techniques of fast and delayed chlorophyll fluorescence induction). These include classical and novel (such as Partial Least Squares) regression methods, unsupervised cluster analysis techniques, various classification methods (support vector machine, random forest, etc.) and artificial neural networks (multilayer perceptron, long short-term memory, etc.). Special aspects of time-series analysis are considered. Applicability of particular information sources and mathematical methods for assessment of water quality and prediction of algal blooms, for estimation of primary productivity of biocenoses, stress tolerance of agricultural plants, etc. is discussed." @default.
- W4292167218 created "2022-08-18" @default.
- W4292167218 creator A5007725080 @default.
- W4292167218 creator A5012171335 @default.
- W4292167218 creator A5066762384 @default.
- W4292167218 creator A5069375184 @default.
- W4292167218 creator A5075652984 @default.
- W4292167218 creator A5088071447 @default.
- W4292167218 date "2022-08-01" @default.
- W4292167218 modified "2023-10-14" @default.
- W4292167218 title "Machine learning methods for assessing photosynthetic activity: environmental monitoring applications" @default.
- W4292167218 cites W1970390440 @default.
- W4292167218 cites W1977184325 @default.
- W4292167218 cites W1994431135 @default.
- W4292167218 cites W2031416759 @default.
- W4292167218 cites W2038377060 @default.
- W4292167218 cites W2042978621 @default.
- W4292167218 cites W2045331152 @default.
- W4292167218 cites W2051011028 @default.
- W4292167218 cites W2051908456 @default.
- W4292167218 cites W2068639531 @default.
- W4292167218 cites W2112118618 @default.
- W4292167218 cites W2119513445 @default.
- W4292167218 cites W2126571464 @default.
- W4292167218 cites W2128686953 @default.
- W4292167218 cites W2134829604 @default.
- W4292167218 cites W2222220665 @default.
- W4292167218 cites W2261203854 @default.
- W4292167218 cites W2288649142 @default.
- W4292167218 cites W2296030533 @default.
- W4292167218 cites W2298779432 @default.
- W4292167218 cites W2320891100 @default.
- W4292167218 cites W2473674430 @default.
- W4292167218 cites W2489106453 @default.
- W4292167218 cites W2527750789 @default.
- W4292167218 cites W2547110604 @default.
- W4292167218 cites W2547269372 @default.
- W4292167218 cites W2604645045 @default.
- W4292167218 cites W2607548337 @default.
- W4292167218 cites W265106959 @default.
- W4292167218 cites W2742109465 @default.
- W4292167218 cites W2769106587 @default.
- W4292167218 cites W2776148659 @default.
- W4292167218 cites W2787894218 @default.
- W4292167218 cites W2789944198 @default.
- W4292167218 cites W2790979755 @default.
- W4292167218 cites W2793815698 @default.
- W4292167218 cites W2800635075 @default.
- W4292167218 cites W2805142011 @default.
- W4292167218 cites W2808730255 @default.
- W4292167218 cites W2809295405 @default.
- W4292167218 cites W2810429977 @default.
- W4292167218 cites W2895146675 @default.
- W4292167218 cites W2896556344 @default.
- W4292167218 cites W2897315613 @default.
- W4292167218 cites W2905092114 @default.
- W4292167218 cites W2908843349 @default.
- W4292167218 cites W2911777435 @default.
- W4292167218 cites W2920938544 @default.
- W4292167218 cites W2946556606 @default.
- W4292167218 cites W2947152669 @default.
- W4292167218 cites W2951244176 @default.
- W4292167218 cites W2953686964 @default.
- W4292167218 cites W2971619165 @default.
- W4292167218 cites W2973286737 @default.
- W4292167218 cites W2978485176 @default.
- W4292167218 cites W2990912487 @default.
- W4292167218 cites W2991238520 @default.
- W4292167218 cites W2999480791 @default.
- W4292167218 cites W3000736475 @default.
- W4292167218 cites W3001646307 @default.
- W4292167218 cites W3004196344 @default.
- W4292167218 cites W3004942926 @default.
- W4292167218 cites W3006147073 @default.
- W4292167218 cites W3008623787 @default.
- W4292167218 cites W3017707823 @default.
- W4292167218 cites W3019900645 @default.
- W4292167218 cites W3026129424 @default.
- W4292167218 cites W3032271083 @default.
- W4292167218 cites W3043182823 @default.
- W4292167218 cites W3044422407 @default.
- W4292167218 cites W3079760979 @default.
- W4292167218 cites W3087362407 @default.
- W4292167218 cites W3101749733 @default.
- W4292167218 cites W3118728338 @default.
- W4292167218 cites W3130448211 @default.
- W4292167218 cites W3134952303 @default.
- W4292167218 cites W3139251132 @default.
- W4292167218 cites W3142909427 @default.
- W4292167218 cites W3157684590 @default.
- W4292167218 cites W3161663163 @default.
- W4292167218 cites W3173421616 @default.
- W4292167218 cites W3175656574 @default.
- W4292167218 cites W3185030868 @default.
- W4292167218 cites W3194073104 @default.
- W4292167218 cites W3197622696 @default.
- W4292167218 cites W3202263196 @default.
- W4292167218 cites W3207301792 @default.