Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292170242> ?p ?o ?g. }
- W4292170242 endingPage "4728" @default.
- W4292170242 startingPage "4712" @default.
- W4292170242 abstract "Reliability and maintainability are the key system effectiveness measures in process and manufacturing industries, and treatment plants, especially in E-waste management plants. The present work is proposed with a motto to develop a stochastic framework for the e-waste management plant to optimize its availability integrated with reliability, availability, maintainability, and dependability (RAMD) measures and Markovian analysis to estimate the steady-state availability of the E-waste management plant. In the analysis an effort is also made to identify the best performing algorithm for availability optimization of the e-waste plant. A stochastic model for a particular plant is developed and its availability is optimized using various metaheuristic approaches like a genetic algorithm (GA), particle swarm optimization (PSO), and differential evolutions (DE). The most sensitive component is identified using RAMD methodology while the effect of deviation in various failure and repair rates are observed by the proposed model. The failure and repair rates follow an exponential distribution. All time-dependent random variables are statistically independent. A novel stochastic model is presented for an e-waste management plant and optimum availability is obtained using metaheuristic approaches. The proposed methodology is not so far discussed in the reliability analysis of process industries. The numerical results of the proposed model compared to identify the most efficient algorithm. It is observed that genetic algorithm provides the maximum value (0.92330969) of availability at a population size 2500 after 500 iterations. PSO algorithm attained the maximum value (0.99996744) of availability just after 50 iterations and 100 population size. So, its rate of convergence is faster than GA. The optimum value of availability is 0.99997 using differential evolution after 500 iterations and population size of more than 1000. These findings are very beneficial for system designers. The proposed methodology can be utilized to find the reliability measures of other process industries." @default.
- W4292170242 created "2022-08-18" @default.
- W4292170242 creator A5013150230 @default.
- W4292170242 creator A5020133324 @default.
- W4292170242 creator A5034090560 @default.
- W4292170242 creator A5034347136 @default.
- W4292170242 creator A5047878382 @default.
- W4292170242 creator A5056450544 @default.
- W4292170242 creator A5069206940 @default.
- W4292170242 creator A5081059521 @default.
- W4292170242 date "2022-09-01" @default.
- W4292170242 modified "2023-09-30" @default.
- W4292170242 title "Efficient computational stochastic framework for performance optimization of E-waste management plant" @default.
- W4292170242 cites W1595159159 @default.
- W4292170242 cites W1971450491 @default.
- W4292170242 cites W2001994280 @default.
- W4292170242 cites W2021525629 @default.
- W4292170242 cites W2095568477 @default.
- W4292170242 cites W2099929014 @default.
- W4292170242 cites W2117250519 @default.
- W4292170242 cites W2155529731 @default.
- W4292170242 cites W2162145193 @default.
- W4292170242 cites W2647971853 @default.
- W4292170242 cites W2920996703 @default.
- W4292170242 cites W2937564623 @default.
- W4292170242 cites W2988838587 @default.
- W4292170242 cites W2990218347 @default.
- W4292170242 cites W3009963161 @default.
- W4292170242 cites W3025349427 @default.
- W4292170242 cites W3025931493 @default.
- W4292170242 cites W3033936477 @default.
- W4292170242 cites W3084305887 @default.
- W4292170242 cites W3092835370 @default.
- W4292170242 cites W3126173653 @default.
- W4292170242 cites W3135029437 @default.
- W4292170242 cites W3166176923 @default.
- W4292170242 cites W3181623413 @default.
- W4292170242 cites W3208740448 @default.
- W4292170242 cites W4200181468 @default.
- W4292170242 cites W4200335605 @default.
- W4292170242 cites W4205657727 @default.
- W4292170242 cites W4206032063 @default.
- W4292170242 cites W4206116417 @default.
- W4292170242 cites W4210733938 @default.
- W4292170242 cites W4220977663 @default.
- W4292170242 doi "https://doi.org/10.1016/j.jksuci.2022.05.018" @default.
- W4292170242 hasPublicationYear "2022" @default.
- W4292170242 type Work @default.
- W4292170242 citedByCount "3" @default.
- W4292170242 countsByYear W42921702422022 @default.
- W4292170242 countsByYear W42921702422023 @default.
- W4292170242 crossrefType "journal-article" @default.
- W4292170242 hasAuthorship W4292170242A5013150230 @default.
- W4292170242 hasAuthorship W4292170242A5020133324 @default.
- W4292170242 hasAuthorship W4292170242A5034090560 @default.
- W4292170242 hasAuthorship W4292170242A5034347136 @default.
- W4292170242 hasAuthorship W4292170242A5047878382 @default.
- W4292170242 hasAuthorship W4292170242A5056450544 @default.
- W4292170242 hasAuthorship W4292170242A5069206940 @default.
- W4292170242 hasAuthorship W4292170242A5081059521 @default.
- W4292170242 hasBestOaLocation W42921702421 @default.
- W4292170242 hasConcept C109718341 @default.
- W4292170242 hasConcept C121332964 @default.
- W4292170242 hasConcept C126255220 @default.
- W4292170242 hasConcept C127413603 @default.
- W4292170242 hasConcept C144024400 @default.
- W4292170242 hasConcept C149923435 @default.
- W4292170242 hasConcept C160713754 @default.
- W4292170242 hasConcept C163258240 @default.
- W4292170242 hasConcept C200601418 @default.
- W4292170242 hasConcept C2908647359 @default.
- W4292170242 hasConcept C33923547 @default.
- W4292170242 hasConcept C41008148 @default.
- W4292170242 hasConcept C43214815 @default.
- W4292170242 hasConcept C62520636 @default.
- W4292170242 hasConcept C77019957 @default.
- W4292170242 hasConcept C85617194 @default.
- W4292170242 hasConcept C8880873 @default.
- W4292170242 hasConceptScore W4292170242C109718341 @default.
- W4292170242 hasConceptScore W4292170242C121332964 @default.
- W4292170242 hasConceptScore W4292170242C126255220 @default.
- W4292170242 hasConceptScore W4292170242C127413603 @default.
- W4292170242 hasConceptScore W4292170242C144024400 @default.
- W4292170242 hasConceptScore W4292170242C149923435 @default.
- W4292170242 hasConceptScore W4292170242C160713754 @default.
- W4292170242 hasConceptScore W4292170242C163258240 @default.
- W4292170242 hasConceptScore W4292170242C200601418 @default.
- W4292170242 hasConceptScore W4292170242C2908647359 @default.
- W4292170242 hasConceptScore W4292170242C33923547 @default.
- W4292170242 hasConceptScore W4292170242C41008148 @default.
- W4292170242 hasConceptScore W4292170242C43214815 @default.
- W4292170242 hasConceptScore W4292170242C62520636 @default.
- W4292170242 hasConceptScore W4292170242C77019957 @default.
- W4292170242 hasConceptScore W4292170242C85617194 @default.
- W4292170242 hasConceptScore W4292170242C8880873 @default.
- W4292170242 hasFunder F4320322030 @default.
- W4292170242 hasFunder F4320322120 @default.
- W4292170242 hasFunder F4320330380 @default.