Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292179394> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4292179394 endingPage "1083" @default.
- W4292179394 startingPage "1067" @default.
- W4292179394 abstract "Volumetric lung tumor segmentation is difficult due to the diversity of the sizes, locations and shapes of lung tumors, as well as the similarity in the intensity with surrounding tissue structures.We propose a dual-coupling net for accurate lung tumor segmentation in chest CT images regardless of sizes, locations and shapes of lung tumors.METHODSTo extract shape information from lung tumors and use it as shape prior, three-planar images including axial, coronal, and sagittal planes are trained on 2D-Nets. Two types of window images, lung and mediastinal window images, are trained on 2D-Nets to distinguish lung tumors from the thoracic region and to better separate the boundaries of lung tumors from adjacent tissue structures. To prevent false-positive outliers to adjacent structures and to consider the spatial information of lung tumors, pairs of tumor volume-of-interest (VOI) and tumor shape prior are trained on 3D-Net.RESULTSIn the first experiment, the dual-coupling net had the highest Dice Similarity Coefficient (DSC) of 75.7%, considering the shape prior as well as mediastinal window images to prevent the leakage of adjacent structures while maintaining the shape of the lung tumor, with 18.23% p, 3.7% p, 1.1% p, and 1.77% p higher DSCs than in the 2D-Net, 2.5D-Net, 3D-Net, and single-coupling net results, respectively. In the second experiment with annotations for two clinicians, the dual-coupling net showed outcomes of 67.73% and 65.07% regarding the DSC for each annotation. In the third experiment, the dual-coupling net showed 70.97% for the DSC.CONCLUSIONSThe dual-coupling net enables accurate segmentation by distinguishing lung tumors from surrounding tissue structures and thus yields the highest DSC value." @default.
- W4292179394 created "2022-08-18" @default.
- W4292179394 creator A5024696454 @default.
- W4292179394 creator A5035033921 @default.
- W4292179394 creator A5077649721 @default.
- W4292179394 creator A5087781937 @default.
- W4292179394 date "2022-11-24" @default.
- W4292179394 modified "2023-09-30" @default.
- W4292179394 title "Lung tumor segmentation using dual-coupling net with shape prior based on lung and mediastinal window images from chest CT images" @default.
- W4292179394 cites W1901129140 @default.
- W4292179394 cites W2019607817 @default.
- W4292179394 cites W2026616100 @default.
- W4292179394 cites W2251438188 @default.
- W4292179394 cites W2464708700 @default.
- W4292179394 cites W2732063980 @default.
- W4292179394 cites W2768295347 @default.
- W4292179394 cites W2791340326 @default.
- W4292179394 cites W2793444752 @default.
- W4292179394 cites W2883311907 @default.
- W4292179394 cites W2888436377 @default.
- W4292179394 cites W2910876233 @default.
- W4292179394 cites W3011153338 @default.
- W4292179394 doi "https://doi.org/10.3233/xst-221191" @default.
- W4292179394 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35988260" @default.
- W4292179394 hasPublicationYear "2022" @default.
- W4292179394 type Work @default.
- W4292179394 citedByCount "1" @default.
- W4292179394 countsByYear W42921793942023 @default.
- W4292179394 crossrefType "journal-article" @default.
- W4292179394 hasAuthorship W4292179394A5024696454 @default.
- W4292179394 hasAuthorship W4292179394A5035033921 @default.
- W4292179394 hasAuthorship W4292179394A5077649721 @default.
- W4292179394 hasAuthorship W4292179394A5087781937 @default.
- W4292179394 hasConcept C103278499 @default.
- W4292179394 hasConcept C115961682 @default.
- W4292179394 hasConcept C126322002 @default.
- W4292179394 hasConcept C126838900 @default.
- W4292179394 hasConcept C13483470 @default.
- W4292179394 hasConcept C142724271 @default.
- W4292179394 hasConcept C154945302 @default.
- W4292179394 hasConcept C178910020 @default.
- W4292179394 hasConcept C2776256026 @default.
- W4292179394 hasConcept C2777714996 @default.
- W4292179394 hasConcept C2989005 @default.
- W4292179394 hasConcept C41008148 @default.
- W4292179394 hasConcept C71924100 @default.
- W4292179394 hasConcept C89600930 @default.
- W4292179394 hasConceptScore W4292179394C103278499 @default.
- W4292179394 hasConceptScore W4292179394C115961682 @default.
- W4292179394 hasConceptScore W4292179394C126322002 @default.
- W4292179394 hasConceptScore W4292179394C126838900 @default.
- W4292179394 hasConceptScore W4292179394C13483470 @default.
- W4292179394 hasConceptScore W4292179394C142724271 @default.
- W4292179394 hasConceptScore W4292179394C154945302 @default.
- W4292179394 hasConceptScore W4292179394C178910020 @default.
- W4292179394 hasConceptScore W4292179394C2776256026 @default.
- W4292179394 hasConceptScore W4292179394C2777714996 @default.
- W4292179394 hasConceptScore W4292179394C2989005 @default.
- W4292179394 hasConceptScore W4292179394C41008148 @default.
- W4292179394 hasConceptScore W4292179394C71924100 @default.
- W4292179394 hasConceptScore W4292179394C89600930 @default.
- W4292179394 hasIssue "6" @default.
- W4292179394 hasLocation W42921793941 @default.
- W4292179394 hasLocation W42921793942 @default.
- W4292179394 hasOpenAccess W4292179394 @default.
- W4292179394 hasPrimaryLocation W42921793941 @default.
- W4292179394 hasRelatedWork W1976376511 @default.
- W4292179394 hasRelatedWork W2009669210 @default.
- W4292179394 hasRelatedWork W2038288648 @default.
- W4292179394 hasRelatedWork W2085797056 @default.
- W4292179394 hasRelatedWork W2100978556 @default.
- W4292179394 hasRelatedWork W2748952813 @default.
- W4292179394 hasRelatedWork W2899084033 @default.
- W4292179394 hasRelatedWork W3009130715 @default.
- W4292179394 hasRelatedWork W3029575091 @default.
- W4292179394 hasRelatedWork W3206109241 @default.
- W4292179394 hasVolume "30" @default.
- W4292179394 isParatext "false" @default.
- W4292179394 isRetracted "false" @default.
- W4292179394 workType "article" @default.