Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292184665> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4292184665 endingPage "1168" @default.
- W4292184665 startingPage "1155" @default.
- W4292184665 abstract "PURPOSE: To investigate the value of a CT-based radiomics model in identification of Crohn’s disease (CD) active phase and remission phase. METHODS: CT images of 101 patients diagnosed with CD were retrospectively collected, which included 60 patients in active phase and 41 patients in remission phase. These patients were randomly divided into training group and test group at a ratio of 7 : 3. First, the lesion areas were manually delineated by the physician. Meanwhile, radiomics features were extracted from each lesion. Next, the features were selected by t-test and the least absolute shrinkage and selection operator regression algorithm. Then, several machine learning models including random forest (RF), extreme gradient boosting (XGBoost), support vector machine (SVM), logistic regression (LR) and K-nearest neighbor (KNN) algorithms were used to construct CD activity classification models respectively. Finally, the soft-voting mechanism was used to integrate algorithms with better effects to perform two classifications of data, and the receiver operating characteristic curves were applied to evaluate the diagnostic value of the models. RESULTS: Both on the training set and the test set, AUC of the five machine learning classification models reached 0.85 or more. The ensemble soft-voting classifier obtained by using the combination of SVM, LR and KNN could better distinguish active CD from CD remission. For the test set, AUC was 0.938, and accuracy, sensitivity, and specificity were 0.903, 0.911, and 0.892, respectively. CONCLUSION: This study demonstrated that the established radiomics model could objectively and effectively diagnose CD activity. The integrated approach has better diagnostic performance." @default.
- W4292184665 created "2022-08-18" @default.
- W4292184665 creator A5005531255 @default.
- W4292184665 creator A5018073672 @default.
- W4292184665 creator A5038886742 @default.
- W4292184665 creator A5077403058 @default.
- W4292184665 date "2022-11-24" @default.
- W4292184665 modified "2023-09-27" @default.
- W4292184665 title "Prediction of the activity of Crohn’s disease based on CT radiomics combined with machine learning models" @default.
- W4292184665 cites W1967449231 @default.
- W4292184665 cites W1985727327 @default.
- W4292184665 cites W2019559265 @default.
- W4292184665 cites W2085711142 @default.
- W4292184665 cites W2174661749 @default.
- W4292184665 cites W2257859598 @default.
- W4292184665 cites W2317204516 @default.
- W4292184665 cites W2515111437 @default.
- W4292184665 cites W2622758479 @default.
- W4292184665 cites W2749814893 @default.
- W4292184665 cites W2763556273 @default.
- W4292184665 cites W2789641974 @default.
- W4292184665 cites W2802192143 @default.
- W4292184665 cites W2808447393 @default.
- W4292184665 cites W2921746589 @default.
- W4292184665 cites W2966804407 @default.
- W4292184665 cites W3015320097 @default.
- W4292184665 cites W3034928238 @default.
- W4292184665 cites W3149527659 @default.
- W4292184665 cites W3156165330 @default.
- W4292184665 cites W3160978183 @default.
- W4292184665 cites W3163960587 @default.
- W4292184665 cites W3164310134 @default.
- W4292184665 cites W3194076553 @default.
- W4292184665 cites W3209761878 @default.
- W4292184665 cites W4282962039 @default.
- W4292184665 doi "https://doi.org/10.3233/xst-221224" @default.
- W4292184665 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35988261" @default.
- W4292184665 hasPublicationYear "2022" @default.
- W4292184665 type Work @default.
- W4292184665 citedByCount "0" @default.
- W4292184665 crossrefType "journal-article" @default.
- W4292184665 hasAuthorship W4292184665A5005531255 @default.
- W4292184665 hasAuthorship W4292184665A5018073672 @default.
- W4292184665 hasAuthorship W4292184665A5038886742 @default.
- W4292184665 hasAuthorship W4292184665A5077403058 @default.
- W4292184665 hasConcept C119857082 @default.
- W4292184665 hasConcept C12267149 @default.
- W4292184665 hasConcept C151956035 @default.
- W4292184665 hasConcept C153180895 @default.
- W4292184665 hasConcept C154945302 @default.
- W4292184665 hasConcept C169258074 @default.
- W4292184665 hasConcept C169903167 @default.
- W4292184665 hasConcept C41008148 @default.
- W4292184665 hasConcept C58471807 @default.
- W4292184665 hasConcept C95623464 @default.
- W4292184665 hasConceptScore W4292184665C119857082 @default.
- W4292184665 hasConceptScore W4292184665C12267149 @default.
- W4292184665 hasConceptScore W4292184665C151956035 @default.
- W4292184665 hasConceptScore W4292184665C153180895 @default.
- W4292184665 hasConceptScore W4292184665C154945302 @default.
- W4292184665 hasConceptScore W4292184665C169258074 @default.
- W4292184665 hasConceptScore W4292184665C169903167 @default.
- W4292184665 hasConceptScore W4292184665C41008148 @default.
- W4292184665 hasConceptScore W4292184665C58471807 @default.
- W4292184665 hasConceptScore W4292184665C95623464 @default.
- W4292184665 hasIssue "6" @default.
- W4292184665 hasLocation W42921846651 @default.
- W4292184665 hasLocation W42921846652 @default.
- W4292184665 hasOpenAccess W4292184665 @default.
- W4292184665 hasPrimaryLocation W42921846651 @default.
- W4292184665 hasRelatedWork W2160451891 @default.
- W4292184665 hasRelatedWork W2275058042 @default.
- W4292184665 hasRelatedWork W2979979539 @default.
- W4292184665 hasRelatedWork W3195168932 @default.
- W4292184665 hasRelatedWork W3217110323 @default.
- W4292184665 hasRelatedWork W4205958290 @default.
- W4292184665 hasRelatedWork W4246246790 @default.
- W4292184665 hasRelatedWork W4251731838 @default.
- W4292184665 hasRelatedWork W4286744707 @default.
- W4292184665 hasRelatedWork W4320483443 @default.
- W4292184665 hasVolume "30" @default.
- W4292184665 isParatext "false" @default.
- W4292184665 isRetracted "false" @default.
- W4292184665 workType "article" @default.