Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292196038> ?p ?o ?g. }
- W4292196038 endingPage "2492" @default.
- W4292196038 startingPage "2492" @default.
- W4292196038 abstract "Water levels in rivers are measured by various devices installed mostly in remote locations along the rivers, and the collected data are then transmitted via telemetry systems to a data centre for further analysis and utilisation, including producing early warnings for risk situations. So, the data quality is essential. However, the devices in the telemetry station may malfunction and cause errors in the data, which can result in false alarms or missed true alarms. Finding these errors requires experienced humans with specialised knowledge, which is very time-consuming and also inconsistent. Thus, there is a need to develop an automated approach. In this paper, we firstly investigated the applicability of Deep Reinforcement Learning (DRL). The testing results show that whilst they are more accurate than some other machine learning models, particularly in identifying unknown anomalies, they lacked consistency. Therefore, we proposed an ensemble approach that combines DRL models to improve consistency and also accuracy. Compared with other models, including Multilayer Perceptrons (MLP) and Long Short-Term Memory (LSTM), our ensemble models are not only more accurate in most cases, but more importantly, more reliable." @default.
- W4292196038 created "2022-08-18" @default.
- W4292196038 creator A5012776258 @default.
- W4292196038 creator A5052080056 @default.
- W4292196038 date "2022-08-13" @default.
- W4292196038 modified "2023-09-26" @default.
- W4292196038 title "Deep Reinforcement Learning Ensemble for Detecting Anomaly in Telemetry Water Level Data" @default.
- W4292196038 cites W1546200464 @default.
- W4292196038 cites W2048430744 @default.
- W4292196038 cites W2055865901 @default.
- W4292196038 cites W2080937097 @default.
- W4292196038 cites W2121904442 @default.
- W4292196038 cites W2124267516 @default.
- W4292196038 cites W2145339207 @default.
- W4292196038 cites W2170407469 @default.
- W4292196038 cites W2515822248 @default.
- W4292196038 cites W2536692889 @default.
- W4292196038 cites W2580909119 @default.
- W4292196038 cites W2588323091 @default.
- W4292196038 cites W2743138268 @default.
- W4292196038 cites W2761148314 @default.
- W4292196038 cites W2766447205 @default.
- W4292196038 cites W2768001427 @default.
- W4292196038 cites W2780799698 @default.
- W4292196038 cites W2796013264 @default.
- W4292196038 cites W2806741695 @default.
- W4292196038 cites W2888297916 @default.
- W4292196038 cites W2903988118 @default.
- W4292196038 cites W2906498146 @default.
- W4292196038 cites W2908827354 @default.
- W4292196038 cites W2909693411 @default.
- W4292196038 cites W2909960414 @default.
- W4292196038 cites W2945801048 @default.
- W4292196038 cites W3011591403 @default.
- W4292196038 cites W3019878414 @default.
- W4292196038 cites W3023213286 @default.
- W4292196038 cites W3086699455 @default.
- W4292196038 cites W3100771313 @default.
- W4292196038 cites W3158464467 @default.
- W4292196038 cites W3171293792 @default.
- W4292196038 cites W3202546516 @default.
- W4292196038 cites W3206189981 @default.
- W4292196038 cites W4206911247 @default.
- W4292196038 cites W4210276887 @default.
- W4292196038 cites W4230861824 @default.
- W4292196038 cites W4283080878 @default.
- W4292196038 doi "https://doi.org/10.3390/w14162492" @default.
- W4292196038 hasPublicationYear "2022" @default.
- W4292196038 type Work @default.
- W4292196038 citedByCount "1" @default.
- W4292196038 countsByYear W42921960382023 @default.
- W4292196038 crossrefType "journal-article" @default.
- W4292196038 hasAuthorship W4292196038A5012776258 @default.
- W4292196038 hasAuthorship W4292196038A5052080056 @default.
- W4292196038 hasBestOaLocation W42921960381 @default.
- W4292196038 hasConcept C119857082 @default.
- W4292196038 hasConcept C121332964 @default.
- W4292196038 hasConcept C124101348 @default.
- W4292196038 hasConcept C12997251 @default.
- W4292196038 hasConcept C154945302 @default.
- W4292196038 hasConcept C183121708 @default.
- W4292196038 hasConcept C26873012 @default.
- W4292196038 hasConcept C2776436953 @default.
- W4292196038 hasConcept C41008148 @default.
- W4292196038 hasConcept C45942800 @default.
- W4292196038 hasConcept C50644808 @default.
- W4292196038 hasConcept C60908668 @default.
- W4292196038 hasConcept C739882 @default.
- W4292196038 hasConcept C76155785 @default.
- W4292196038 hasConcept C97541855 @default.
- W4292196038 hasConceptScore W4292196038C119857082 @default.
- W4292196038 hasConceptScore W4292196038C121332964 @default.
- W4292196038 hasConceptScore W4292196038C124101348 @default.
- W4292196038 hasConceptScore W4292196038C12997251 @default.
- W4292196038 hasConceptScore W4292196038C154945302 @default.
- W4292196038 hasConceptScore W4292196038C183121708 @default.
- W4292196038 hasConceptScore W4292196038C26873012 @default.
- W4292196038 hasConceptScore W4292196038C2776436953 @default.
- W4292196038 hasConceptScore W4292196038C41008148 @default.
- W4292196038 hasConceptScore W4292196038C45942800 @default.
- W4292196038 hasConceptScore W4292196038C50644808 @default.
- W4292196038 hasConceptScore W4292196038C60908668 @default.
- W4292196038 hasConceptScore W4292196038C739882 @default.
- W4292196038 hasConceptScore W4292196038C76155785 @default.
- W4292196038 hasConceptScore W4292196038C97541855 @default.
- W4292196038 hasIssue "16" @default.
- W4292196038 hasLocation W42921960381 @default.
- W4292196038 hasLocation W42921960382 @default.
- W4292196038 hasLocation W42921960383 @default.
- W4292196038 hasOpenAccess W4292196038 @default.
- W4292196038 hasPrimaryLocation W42921960381 @default.
- W4292196038 hasRelatedWork W2019888932 @default.
- W4292196038 hasRelatedWork W2042251007 @default.
- W4292196038 hasRelatedWork W2984111956 @default.
- W4292196038 hasRelatedWork W2996773628 @default.
- W4292196038 hasRelatedWork W3112685504 @default.
- W4292196038 hasRelatedWork W4245248941 @default.
- W4292196038 hasRelatedWork W4285046548 @default.