Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292196306> ?p ?o ?g. }
- W4292196306 endingPage "11627" @default.
- W4292196306 startingPage "11595" @default.
- W4292196306 abstract "Cognitive green computing (CGC) is widely used in the Internet of Things (IoT) for the smart city. As the power system of the smart city, the smart grid has benefited from CGC, which can achieve the dynamic regulation of the electric energy and resource integration optimization. However, it is still challenging for improving the identification accuracy and the performance of the load model in the smart grid. In this paper, we present a novel algorithm framework based on reinforcement learning (RL) to improve the performance of non-invasive load monitoring and identification (NILMI). In this model, a knowledge base of load power facilities (LPF-KB) architecture is designed to facilitate the load data-shared collection and storage; utilizing deep convolutional neural networks (DNNs) structure based on the attentional mechanism to enhance the representations learning of load features; using RL-based Monte-Carlo tree search (MCTS) method to construct an optimal strategy network, and to realize the online combined load prediction without relying on the prior knowledge. We use the massive experiment on the real-world datasets of household appliances to evaluate the performance of our method. The experimental results show that our approach has remarkable performance in reducing the load online identification error rate. Our model is a generic model, and it can be widely used in practical load monitoring identification and the power prediction system." @default.
- W4292196306 created "2022-08-18" @default.
- W4292196306 creator A5019876087 @default.
- W4292196306 creator A5046380471 @default.
- W4292196306 creator A5082685261 @default.
- W4292196306 creator A5088482310 @default.
- W4292196306 date "2022-01-01" @default.
- W4292196306 modified "2023-09-30" @default.
- W4292196306 title "Reinforced MCTS for non-intrusive online load identification based on cognitive green computing in smart grid" @default.
- W4292196306 cites W1988917187 @default.
- W4292196306 cites W2344234701 @default.
- W4292196306 cites W2526261332 @default.
- W4292196306 cites W2605242105 @default.
- W4292196306 cites W2757144228 @default.
- W4292196306 cites W2766447205 @default.
- W4292196306 cites W2770861978 @default.
- W4292196306 cites W2908779501 @default.
- W4292196306 cites W2910687460 @default.
- W4292196306 cites W2926295867 @default.
- W4292196306 cites W2942281146 @default.
- W4292196306 cites W2963723202 @default.
- W4292196306 cites W2971067036 @default.
- W4292196306 cites W2971523055 @default.
- W4292196306 cites W2990083057 @default.
- W4292196306 cites W2995837271 @default.
- W4292196306 cites W2997371401 @default.
- W4292196306 cites W3001437801 @default.
- W4292196306 cites W3003684592 @default.
- W4292196306 cites W3008901316 @default.
- W4292196306 cites W3010208964 @default.
- W4292196306 cites W3014282671 @default.
- W4292196306 cites W3016741933 @default.
- W4292196306 cites W3025353292 @default.
- W4292196306 cites W3033701621 @default.
- W4292196306 cites W3041235554 @default.
- W4292196306 cites W3044070975 @default.
- W4292196306 cites W3083674840 @default.
- W4292196306 cites W3089119339 @default.
- W4292196306 cites W3095472304 @default.
- W4292196306 cites W3101124797 @default.
- W4292196306 cites W3106773247 @default.
- W4292196306 cites W3110772671 @default.
- W4292196306 cites W3117102690 @default.
- W4292196306 cites W3119894941 @default.
- W4292196306 cites W3129002219 @default.
- W4292196306 cites W3130808434 @default.
- W4292196306 cites W3131561238 @default.
- W4292196306 cites W3140350963 @default.
- W4292196306 cites W3159848054 @default.
- W4292196306 cites W3162502503 @default.
- W4292196306 cites W3162590563 @default.
- W4292196306 cites W3164118611 @default.
- W4292196306 cites W3166515824 @default.
- W4292196306 cites W3168826180 @default.
- W4292196306 cites W3169312173 @default.
- W4292196306 cites W3170622838 @default.
- W4292196306 cites W3178142927 @default.
- W4292196306 cites W3181227279 @default.
- W4292196306 cites W3182116200 @default.
- W4292196306 cites W3191267141 @default.
- W4292196306 cites W3194280320 @default.
- W4292196306 cites W3194588178 @default.
- W4292196306 cites W3195028221 @default.
- W4292196306 cites W3198191648 @default.
- W4292196306 cites W3198564693 @default.
- W4292196306 cites W3204810118 @default.
- W4292196306 cites W3211041575 @default.
- W4292196306 cites W3213916533 @default.
- W4292196306 cites W3217103056 @default.
- W4292196306 doi "https://doi.org/10.3934/mbe.2022540" @default.
- W4292196306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36124605" @default.
- W4292196306 hasPublicationYear "2022" @default.
- W4292196306 type Work @default.
- W4292196306 citedByCount "1" @default.
- W4292196306 countsByYear W42921963062023 @default.
- W4292196306 crossrefType "journal-article" @default.
- W4292196306 hasAuthorship W4292196306A5019876087 @default.
- W4292196306 hasAuthorship W4292196306A5046380471 @default.
- W4292196306 hasAuthorship W4292196306A5082685261 @default.
- W4292196306 hasAuthorship W4292196306A5088482310 @default.
- W4292196306 hasBestOaLocation W42921963061 @default.
- W4292196306 hasConcept C10558101 @default.
- W4292196306 hasConcept C113174947 @default.
- W4292196306 hasConcept C116834253 @default.
- W4292196306 hasConcept C119599485 @default.
- W4292196306 hasConcept C119857082 @default.
- W4292196306 hasConcept C120314980 @default.
- W4292196306 hasConcept C121332964 @default.
- W4292196306 hasConcept C127413603 @default.
- W4292196306 hasConcept C134306372 @default.
- W4292196306 hasConcept C154945302 @default.
- W4292196306 hasConcept C163258240 @default.
- W4292196306 hasConcept C187691185 @default.
- W4292196306 hasConcept C206345919 @default.
- W4292196306 hasConcept C2524010 @default.
- W4292196306 hasConcept C2780801425 @default.
- W4292196306 hasConcept C31258907 @default.
- W4292196306 hasConcept C33923547 @default.