Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292231135> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4292231135 abstract "Activity Recognition (AR) models perform well with a large number of available training instances. However, in the presence of sensor heterogeneity, sensing biasness and variability of human behaviors and activities and unseen activity classes pose key challenges to adopting and scaling these pre-trained activity recognition models in the new environment. These challenging unseen activities recognition problems are addressed by applying transfer learning techniques that leverage a limited number of annotated samples and utilize the inherent structural patterns among activities within and across the source and target domains. This work proposes a novel AR framework that uses the pre-trained deep autoencoder model and generates features from source and target activity samples. Furthermore, this AR frame-work establishes correlations among activities between the source and target domain by exploiting intra- and inter-class knowledge transfer to mitigate the number of labeled samples and recognize unseen activities in the target domain. We validated the efficacy and effectiveness of our AR framework with three real-world data traces (Daily and Sports, Opportunistic, and Wisdm) that contain 41 users and 26 activities in total. Our AR framework achieves performance gains ≈ 5-6% with 111, 18, and 70 activity samples (20 % annotated samples) for Das, Opp, and Wisdm datasets. In addition, our proposed AR framework requires 56, 8, and 35 fewer activity samples (10% fewer annotated examples) for Das, Opp, and Wisdm, respectively, compared to the state-of-the-art Untran model." @default.
- W4292231135 created "2022-08-19" @default.
- W4292231135 creator A5068320631 @default.
- W4292231135 creator A5072696208 @default.
- W4292231135 date "2022-06-01" @default.
- W4292231135 modified "2023-09-27" @default.
- W4292231135 title "Cross-Domain Unseen Activity Recognition Using Transfer Learning" @default.
- W4292231135 cites W114517082 @default.
- W4292231135 cites W1484678121 @default.
- W4292231135 cites W1613249581 @default.
- W4292231135 cites W1916279783 @default.
- W4292231135 cites W1983320747 @default.
- W4292231135 cites W2012557818 @default.
- W4292231135 cites W2017351764 @default.
- W4292231135 cites W2017634428 @default.
- W4292231135 cites W2023302299 @default.
- W4292231135 cites W2028782774 @default.
- W4292231135 cites W2037265949 @default.
- W4292231135 cites W2050230532 @default.
- W4292231135 cites W2054780155 @default.
- W4292231135 cites W2073401630 @default.
- W4292231135 cites W2089468765 @default.
- W4292231135 cites W2091066410 @default.
- W4292231135 cites W2096943734 @default.
- W4292231135 cites W2115403315 @default.
- W4292231135 cites W2123504417 @default.
- W4292231135 cites W2126511896 @default.
- W4292231135 cites W2134982367 @default.
- W4292231135 cites W2211868589 @default.
- W4292231135 cites W2219995598 @default.
- W4292231135 cites W2342792048 @default.
- W4292231135 cites W2547746635 @default.
- W4292231135 cites W2604630936 @default.
- W4292231135 cites W2606107235 @default.
- W4292231135 cites W2805958787 @default.
- W4292231135 cites W2963054573 @default.
- W4292231135 cites W4210592990 @default.
- W4292231135 cites W4231109964 @default.
- W4292231135 doi "https://doi.org/10.1109/compsac54236.2022.00117" @default.
- W4292231135 hasPublicationYear "2022" @default.
- W4292231135 type Work @default.
- W4292231135 citedByCount "0" @default.
- W4292231135 crossrefType "proceedings-article" @default.
- W4292231135 hasAuthorship W4292231135A5068320631 @default.
- W4292231135 hasAuthorship W4292231135A5072696208 @default.
- W4292231135 hasBestOaLocation W42922311352 @default.
- W4292231135 hasConcept C101738243 @default.
- W4292231135 hasConcept C108583219 @default.
- W4292231135 hasConcept C119857082 @default.
- W4292231135 hasConcept C121687571 @default.
- W4292231135 hasConcept C134306372 @default.
- W4292231135 hasConcept C150899416 @default.
- W4292231135 hasConcept C153083717 @default.
- W4292231135 hasConcept C153180895 @default.
- W4292231135 hasConcept C154945302 @default.
- W4292231135 hasConcept C2776145971 @default.
- W4292231135 hasConcept C33923547 @default.
- W4292231135 hasConcept C36503486 @default.
- W4292231135 hasConcept C41008148 @default.
- W4292231135 hasConceptScore W4292231135C101738243 @default.
- W4292231135 hasConceptScore W4292231135C108583219 @default.
- W4292231135 hasConceptScore W4292231135C119857082 @default.
- W4292231135 hasConceptScore W4292231135C121687571 @default.
- W4292231135 hasConceptScore W4292231135C134306372 @default.
- W4292231135 hasConceptScore W4292231135C150899416 @default.
- W4292231135 hasConceptScore W4292231135C153083717 @default.
- W4292231135 hasConceptScore W4292231135C153180895 @default.
- W4292231135 hasConceptScore W4292231135C154945302 @default.
- W4292231135 hasConceptScore W4292231135C2776145971 @default.
- W4292231135 hasConceptScore W4292231135C33923547 @default.
- W4292231135 hasConceptScore W4292231135C36503486 @default.
- W4292231135 hasConceptScore W4292231135C41008148 @default.
- W4292231135 hasLocation W42922311351 @default.
- W4292231135 hasLocation W42922311352 @default.
- W4292231135 hasOpenAccess W4292231135 @default.
- W4292231135 hasPrimaryLocation W42922311351 @default.
- W4292231135 hasRelatedWork W2949843150 @default.
- W4292231135 hasRelatedWork W4213225422 @default.
- W4292231135 hasRelatedWork W4213299466 @default.
- W4292231135 hasRelatedWork W4220775285 @default.
- W4292231135 hasRelatedWork W4224044423 @default.
- W4292231135 hasRelatedWork W4289656111 @default.
- W4292231135 hasRelatedWork W4292231135 @default.
- W4292231135 hasRelatedWork W4292874285 @default.
- W4292231135 hasRelatedWork W4312200629 @default.
- W4292231135 hasRelatedWork W2811277026 @default.
- W4292231135 isParatext "false" @default.
- W4292231135 isRetracted "false" @default.
- W4292231135 workType "article" @default.