Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292260862> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4292260862 endingPage "24368" @default.
- W4292260862 startingPage "24355" @default.
- W4292260862 abstract "Most environment perception methods in autonomous vehicles rely on deep neural networks because of their impressive performance. However, neural networks have black-box characteristics in nature, which may lead to perception uncertainty and untrustworthy autonomous vehicles. Thus, this work proposes a decision-making method to adapt the potential perception uncertainty due to the sensor noises, fuzzy features, and unfamiliar inputs. The whole method is named as Perception Neural Networks Uncertainty Aware Decision-Making (PNNUAD) method. PNNUAD first uses the Monte Carlo dropout method to estimate the perception neural network uncertainty into a distribution around the original output. Then, the perception uncertainty will be considered in a designed reinforcement learning-based planner using a distributed value function. Finally, a backup policy will maintain the vehicle’s performance to avoid disastrous perception uncertainty. The evaluation section uses an augmented reality urban driving scenario; namely, the scenario builds in the CARLA simulator while the perception uncertainty comes from the real dataset. This case study focuses on the object class uncertainty of a widely used neural network, i.e., YOLO-V3. The results indicate that the proposed method can maintain AV safety even with poor perception performance. Meanwhile, the AV has not become too conservative by defending the perception uncertainty. This work is necessary for applying the statistics neural networks to safety-critical autonomous vehicles, and the source code will be open-source in this work." @default.
- W4292260862 created "2022-08-19" @default.
- W4292260862 creator A5009072257 @default.
- W4292260862 creator A5016651437 @default.
- W4292260862 creator A5026226819 @default.
- W4292260862 creator A5045792160 @default.
- W4292260862 creator A5064991477 @default.
- W4292260862 creator A5079684072 @default.
- W4292260862 date "2022-12-01" @default.
- W4292260862 modified "2023-10-17" @default.
- W4292260862 title "PNNUAD: Perception Neural Networks Uncertainty Aware Decision-Making for Autonomous Vehicle" @default.
- W4292260862 cites W1536680647 @default.
- W4292260862 cites W1965455100 @default.
- W4292260862 cites W1965770722 @default.
- W4292260862 cites W2006715371 @default.
- W4292260862 cites W2043022059 @default.
- W4292260862 cites W2056877664 @default.
- W4292260862 cites W2102605133 @default.
- W4292260862 cites W2111358452 @default.
- W4292260862 cites W2257979135 @default.
- W4292260862 cites W2505763307 @default.
- W4292260862 cites W2769471004 @default.
- W4292260862 cites W2888401638 @default.
- W4292260862 cites W2891526102 @default.
- W4292260862 cites W2891529090 @default.
- W4292260862 cites W2963351448 @default.
- W4292260862 cites W2963611739 @default.
- W4292260862 cites W2963881378 @default.
- W4292260862 cites W2968924835 @default.
- W4292260862 cites W2970302788 @default.
- W4292260862 cites W2971926293 @default.
- W4292260862 cites W3134491489 @default.
- W4292260862 cites W3164233963 @default.
- W4292260862 cites W3189343424 @default.
- W4292260862 cites W3191119727 @default.
- W4292260862 cites W3209673450 @default.
- W4292260862 cites W3211302749 @default.
- W4292260862 doi "https://doi.org/10.1109/tits.2022.3197602" @default.
- W4292260862 hasPublicationYear "2022" @default.
- W4292260862 type Work @default.
- W4292260862 citedByCount "4" @default.
- W4292260862 countsByYear W42922608622023 @default.
- W4292260862 crossrefType "journal-article" @default.
- W4292260862 hasAuthorship W4292260862A5009072257 @default.
- W4292260862 hasAuthorship W4292260862A5016651437 @default.
- W4292260862 hasAuthorship W4292260862A5026226819 @default.
- W4292260862 hasAuthorship W4292260862A5045792160 @default.
- W4292260862 hasAuthorship W4292260862A5064991477 @default.
- W4292260862 hasAuthorship W4292260862A5079684072 @default.
- W4292260862 hasConcept C119857082 @default.
- W4292260862 hasConcept C127413603 @default.
- W4292260862 hasConcept C154945302 @default.
- W4292260862 hasConcept C169760540 @default.
- W4292260862 hasConcept C26760741 @default.
- W4292260862 hasConcept C2780945871 @default.
- W4292260862 hasConcept C41008148 @default.
- W4292260862 hasConcept C50644808 @default.
- W4292260862 hasConcept C77088390 @default.
- W4292260862 hasConcept C86803240 @default.
- W4292260862 hasConceptScore W4292260862C119857082 @default.
- W4292260862 hasConceptScore W4292260862C127413603 @default.
- W4292260862 hasConceptScore W4292260862C154945302 @default.
- W4292260862 hasConceptScore W4292260862C169760540 @default.
- W4292260862 hasConceptScore W4292260862C26760741 @default.
- W4292260862 hasConceptScore W4292260862C2780945871 @default.
- W4292260862 hasConceptScore W4292260862C41008148 @default.
- W4292260862 hasConceptScore W4292260862C50644808 @default.
- W4292260862 hasConceptScore W4292260862C77088390 @default.
- W4292260862 hasConceptScore W4292260862C86803240 @default.
- W4292260862 hasFunder F4320321001 @default.
- W4292260862 hasFunder F4320335777 @default.
- W4292260862 hasIssue "12" @default.
- W4292260862 hasLocation W42922608621 @default.
- W4292260862 hasOpenAccess W4292260862 @default.
- W4292260862 hasPrimaryLocation W42922608621 @default.
- W4292260862 hasRelatedWork W1505619784 @default.
- W4292260862 hasRelatedWork W1554186893 @default.
- W4292260862 hasRelatedWork W1834047479 @default.
- W4292260862 hasRelatedWork W2075106593 @default.
- W4292260862 hasRelatedWork W2476651607 @default.
- W4292260862 hasRelatedWork W2725924760 @default.
- W4292260862 hasRelatedWork W2803916005 @default.
- W4292260862 hasRelatedWork W2899084033 @default.
- W4292260862 hasRelatedWork W2961085424 @default.
- W4292260862 hasRelatedWork W1629725936 @default.
- W4292260862 hasVolume "23" @default.
- W4292260862 isParatext "false" @default.
- W4292260862 isRetracted "false" @default.
- W4292260862 workType "article" @default.