Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292261556> ?p ?o ?g. }
- W4292261556 endingPage "755" @default.
- W4292261556 startingPage "755" @default.
- W4292261556 abstract "Hypertension is a major global health problem with high prevalence and complex associated health risks. Primary hypertension (PHT) is most common and the reasons behind primary hypertension are largely unknown. Endocrine hypertension (EHT) is another complex form of hypertension with an estimated prevalence varying from 3 to 20% depending on the population studied. It occurs due to underlying conditions associated with hormonal excess mainly related to adrenal tumours and sub-categorised: primary aldosteronism (PA), Cushing’s syndrome (CS), pheochromocytoma or functional paraganglioma (PPGL). Endocrine hypertension is often misdiagnosed as primary hypertension, causing delays in treatment for the underlying condition, reduced quality of life, and costly antihypertensive treatment that is often ineffective. This study systematically used targeted metabolomics and high-throughput machine learning methods to predict the key biomarkers in classifying and distinguishing the various subtypes of endocrine and primary hypertension. The trained models successfully classified CS from PHT and EHT from PHT with 92% specificity on the test set. The most prominent targeted metabolites and metabolite ratios for hypertension identification for different disease comparisons were C18:1, C18:2, and Orn/Arg. Sex was identified as an important feature in CS vs. PHT classification." @default.
- W4292261556 created "2022-08-19" @default.
- W4292261556 creator A5005313542 @default.
- W4292261556 creator A5008459576 @default.
- W4292261556 creator A5014771501 @default.
- W4292261556 creator A5015192187 @default.
- W4292261556 creator A5015997323 @default.
- W4292261556 creator A5017793957 @default.
- W4292261556 creator A5018749828 @default.
- W4292261556 creator A5021048991 @default.
- W4292261556 creator A5021402469 @default.
- W4292261556 creator A5023647519 @default.
- W4292261556 creator A5027407695 @default.
- W4292261556 creator A5030424357 @default.
- W4292261556 creator A5030900709 @default.
- W4292261556 creator A5042079657 @default.
- W4292261556 creator A5046519948 @default.
- W4292261556 creator A5046768397 @default.
- W4292261556 creator A5050121023 @default.
- W4292261556 creator A5051101895 @default.
- W4292261556 creator A5052917636 @default.
- W4292261556 creator A5060659824 @default.
- W4292261556 creator A5061627231 @default.
- W4292261556 creator A5064807965 @default.
- W4292261556 creator A5068747137 @default.
- W4292261556 creator A5075111618 @default.
- W4292261556 creator A5077098386 @default.
- W4292261556 creator A5077608155 @default.
- W4292261556 creator A5082673762 @default.
- W4292261556 creator A5086729980 @default.
- W4292261556 creator A5087811288 @default.
- W4292261556 date "2022-08-16" @default.
- W4292261556 modified "2023-10-01" @default.
- W4292261556 title "Predicting Hypertension Subtypes with Machine Learning Using Targeted Metabolites and Their Ratios" @default.
- W4292261556 cites W1551066950 @default.
- W4292261556 cites W1981039744 @default.
- W4292261556 cites W2014537925 @default.
- W4292261556 cites W2014850687 @default.
- W4292261556 cites W2024046085 @default.
- W4292261556 cites W2032058847 @default.
- W4292261556 cites W2033371754 @default.
- W4292261556 cites W2084150578 @default.
- W4292261556 cites W2096863518 @default.
- W4292261556 cites W2148143831 @default.
- W4292261556 cites W2156665896 @default.
- W4292261556 cites W2165558283 @default.
- W4292261556 cites W2169559860 @default.
- W4292261556 cites W2274063159 @default.
- W4292261556 cites W2497216955 @default.
- W4292261556 cites W2618762433 @default.
- W4292261556 cites W2736279211 @default.
- W4292261556 cites W2759478828 @default.
- W4292261556 cites W2769070560 @default.
- W4292261556 cites W2803125402 @default.
- W4292261556 cites W2883558069 @default.
- W4292261556 cites W2888589263 @default.
- W4292261556 cites W2911964244 @default.
- W4292261556 cites W2913666085 @default.
- W4292261556 cites W2915426957 @default.
- W4292261556 cites W2937695737 @default.
- W4292261556 cites W2944658903 @default.
- W4292261556 cites W2971653491 @default.
- W4292261556 cites W2974361058 @default.
- W4292261556 cites W2980484559 @default.
- W4292261556 cites W2989951694 @default.
- W4292261556 cites W3004465995 @default.
- W4292261556 cites W3025592089 @default.
- W4292261556 cites W3027945570 @default.
- W4292261556 cites W3040220837 @default.
- W4292261556 cites W3118196107 @default.
- W4292261556 cites W4214816651 @default.
- W4292261556 doi "https://doi.org/10.3390/metabo12080755" @default.
- W4292261556 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36005627" @default.
- W4292261556 hasPublicationYear "2022" @default.
- W4292261556 type Work @default.
- W4292261556 citedByCount "2" @default.
- W4292261556 countsByYear W42922615562023 @default.
- W4292261556 crossrefType "journal-article" @default.
- W4292261556 hasAuthorship W4292261556A5005313542 @default.
- W4292261556 hasAuthorship W4292261556A5008459576 @default.
- W4292261556 hasAuthorship W4292261556A5014771501 @default.
- W4292261556 hasAuthorship W4292261556A5015192187 @default.
- W4292261556 hasAuthorship W4292261556A5015997323 @default.
- W4292261556 hasAuthorship W4292261556A5017793957 @default.
- W4292261556 hasAuthorship W4292261556A5018749828 @default.
- W4292261556 hasAuthorship W4292261556A5021048991 @default.
- W4292261556 hasAuthorship W4292261556A5021402469 @default.
- W4292261556 hasAuthorship W4292261556A5023647519 @default.
- W4292261556 hasAuthorship W4292261556A5027407695 @default.
- W4292261556 hasAuthorship W4292261556A5030424357 @default.
- W4292261556 hasAuthorship W4292261556A5030900709 @default.
- W4292261556 hasAuthorship W4292261556A5042079657 @default.
- W4292261556 hasAuthorship W4292261556A5046519948 @default.
- W4292261556 hasAuthorship W4292261556A5046768397 @default.
- W4292261556 hasAuthorship W4292261556A5050121023 @default.
- W4292261556 hasAuthorship W4292261556A5051101895 @default.
- W4292261556 hasAuthorship W4292261556A5052917636 @default.
- W4292261556 hasAuthorship W4292261556A5060659824 @default.