Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292262915> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4292262915 endingPage "152" @default.
- W4292262915 startingPage "139" @default.
- W4292262915 abstract "Purpose There is a gap in knowledge about the Gulf Cooperation Council (GCC) because most studies are undertaken in countries outside the Gulf region – such as China, India, the US and Taiwan. The stock market contains rich, valuable and considerable data, and these data need careful analysis for good decisions to be made that can lead to increases in the efficiency of a business. Data mining techniques offer data processing tools and applications used to enhance decision-maker decisions. This study aims to predict the Kuwait stock market by applying big data mining. Design/methodology/approach The methodology used is quantitative techniques, which are mathematical and statistical models that describe a various array of the relationships of variables. Quantitative methods used to predict the direction of the stock market returns by using four techniques were implemented: logistic regression, decision trees, support vector machine and random forest. Findings The results are all variables statistically significant at the 5% level except gold price and oil price. Also, the variables that do not have an influence on the direction of the rate of return of Boursa Kuwait are money supply and gold price, unlike the Kuwait index, which has the highest coefficient. Furthermore, the height score of the variable that affects the direction of the rate of return is the firms, and the accuracy of the overall performance of the four models is nearly 50%. Research limitations/implications Some of the limitations identified for this study are as follows: (1) location limitation: Kuwait Stock Exchange; (2) time limitation: the amount of time available to accomplish the study, where the period was completed within the academic year 2019-2020 and the academic year 2020-2021. During 2020, the coronavirus pandemic (COVID-19), which was a major obstacle, occurred during data collection and analysis; (3) data limitation: The Kuwait Stock Exchange data were collected from May 2019 to March 2020, while the factors affecting the stock exchange data were collected in July 2020 due to the corona pandemic. Originality/value The study used new titles, variables and techniques such as using data mining to predict the Kuwait stock market. There are no adequate studies that predict the stock market by data mining in the GCC, especially in Kuwait. There is a gap in knowledge in the GCC as most studies are in foreign countries, such as China, India, the US and Taiwan." @default.
- W4292262915 created "2022-08-19" @default.
- W4292262915 creator A5005897191 @default.
- W4292262915 creator A5018248310 @default.
- W4292262915 creator A5056851371 @default.
- W4292262915 creator A5059565717 @default.
- W4292262915 date "2022-08-19" @default.
- W4292262915 modified "2023-10-14" @default.
- W4292262915 title "Stock market prediction by applying big data mining" @default.
- W4292262915 cites W2060430864 @default.
- W4292262915 cites W2066795664 @default.
- W4292262915 cites W2067804178 @default.
- W4292262915 cites W2593842564 @default.
- W4292262915 cites W2625540161 @default.
- W4292262915 cites W2775069679 @default.
- W4292262915 cites W2806446597 @default.
- W4292262915 cites W2811103148 @default.
- W4292262915 cites W2894794116 @default.
- W4292262915 cites W3128606951 @default.
- W4292262915 cites W3130139313 @default.
- W4292262915 cites W3133922037 @default.
- W4292262915 cites W3134081317 @default.
- W4292262915 cites W3150796314 @default.
- W4292262915 cites W4200120675 @default.
- W4292262915 cites W4220736129 @default.
- W4292262915 cites W4230725485 @default.
- W4292262915 cites W4280633155 @default.
- W4292262915 doi "https://doi.org/10.1108/agjsr-05-2022-0053" @default.
- W4292262915 hasPublicationYear "2022" @default.
- W4292262915 type Work @default.
- W4292262915 citedByCount "1" @default.
- W4292262915 countsByYear W42922629152023 @default.
- W4292262915 crossrefType "journal-article" @default.
- W4292262915 hasAuthorship W4292262915A5005897191 @default.
- W4292262915 hasAuthorship W4292262915A5018248310 @default.
- W4292262915 hasAuthorship W4292262915A5056851371 @default.
- W4292262915 hasAuthorship W4292262915A5059565717 @default.
- W4292262915 hasBestOaLocation W42922629151 @default.
- W4292262915 hasConcept C10138342 @default.
- W4292262915 hasConcept C119857082 @default.
- W4292262915 hasConcept C12267149 @default.
- W4292262915 hasConcept C124101348 @default.
- W4292262915 hasConcept C127413603 @default.
- W4292262915 hasConcept C149782125 @default.
- W4292262915 hasConcept C151730666 @default.
- W4292262915 hasConcept C151956035 @default.
- W4292262915 hasConcept C154945302 @default.
- W4292262915 hasConcept C162324750 @default.
- W4292262915 hasConcept C169258074 @default.
- W4292262915 hasConcept C200870193 @default.
- W4292262915 hasConcept C204036174 @default.
- W4292262915 hasConcept C27574286 @default.
- W4292262915 hasConcept C2780299701 @default.
- W4292262915 hasConcept C2780762169 @default.
- W4292262915 hasConcept C41008148 @default.
- W4292262915 hasConcept C75684735 @default.
- W4292262915 hasConcept C78519656 @default.
- W4292262915 hasConcept C84525736 @default.
- W4292262915 hasConcept C86803240 @default.
- W4292262915 hasConceptScore W4292262915C10138342 @default.
- W4292262915 hasConceptScore W4292262915C119857082 @default.
- W4292262915 hasConceptScore W4292262915C12267149 @default.
- W4292262915 hasConceptScore W4292262915C124101348 @default.
- W4292262915 hasConceptScore W4292262915C127413603 @default.
- W4292262915 hasConceptScore W4292262915C149782125 @default.
- W4292262915 hasConceptScore W4292262915C151730666 @default.
- W4292262915 hasConceptScore W4292262915C151956035 @default.
- W4292262915 hasConceptScore W4292262915C154945302 @default.
- W4292262915 hasConceptScore W4292262915C162324750 @default.
- W4292262915 hasConceptScore W4292262915C169258074 @default.
- W4292262915 hasConceptScore W4292262915C200870193 @default.
- W4292262915 hasConceptScore W4292262915C204036174 @default.
- W4292262915 hasConceptScore W4292262915C27574286 @default.
- W4292262915 hasConceptScore W4292262915C2780299701 @default.
- W4292262915 hasConceptScore W4292262915C2780762169 @default.
- W4292262915 hasConceptScore W4292262915C41008148 @default.
- W4292262915 hasConceptScore W4292262915C75684735 @default.
- W4292262915 hasConceptScore W4292262915C78519656 @default.
- W4292262915 hasConceptScore W4292262915C84525736 @default.
- W4292262915 hasConceptScore W4292262915C86803240 @default.
- W4292262915 hasIssue "2" @default.
- W4292262915 hasLocation W42922629151 @default.
- W4292262915 hasOpenAccess W4292262915 @default.
- W4292262915 hasPrimaryLocation W42922629151 @default.
- W4292262915 hasRelatedWork W3138469915 @default.
- W4292262915 hasRelatedWork W4225164054 @default.
- W4292262915 hasRelatedWork W4239706975 @default.
- W4292262915 hasRelatedWork W4281846282 @default.
- W4292262915 hasRelatedWork W4285312668 @default.
- W4292262915 hasRelatedWork W4321636153 @default.
- W4292262915 hasRelatedWork W4322731370 @default.
- W4292262915 hasRelatedWork W4367335893 @default.
- W4292262915 hasRelatedWork W4383535405 @default.
- W4292262915 hasRelatedWork W4384520063 @default.
- W4292262915 hasVolume "40" @default.
- W4292262915 isParatext "false" @default.
- W4292262915 isRetracted "false" @default.
- W4292262915 workType "article" @default.