Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292324130> ?p ?o ?g. }
- W4292324130 abstract "Abstract Social anxiety is a symptom widely prevalent among young adults, and when present in excess, can lead to maladaptive patterns of social behavior. Recent approaches that incorporate brain functional radiomic features and machine learning have shown potential for predicting certain phenotypes or disorders from functional magnetic resonance images. In this study, we aimed to predict the level of social anxiety in young adult participants by training machine learning models with resting-state brain functional radiomic features including the regional homogeneity, fractional amplitude of low-frequency fluctuation, fractional resting-state physiological fluctuation amplitude, and degree centrality. Among the machine learning models, the XGBoost model achieved the best performance with balanced accuracy of 77.7% and F1 score of 0.815. Analysis of input feature importance demonstrated that the orbitofrontal cortex and the degree centrality were most relevant to predicting the level of social anxiety among the input brain regions and the input type of radiomic features, respectively. These results suggest potential validity for predicting social anxiety with machine learning of the resting-state brain functional radiomic features and provide further understanding of the neural basis of the symptom." @default.
- W4292324130 created "2022-08-19" @default.
- W4292324130 creator A5002606698 @default.
- W4292324130 creator A5007457176 @default.
- W4292324130 creator A5052074395 @default.
- W4292324130 creator A5078241350 @default.
- W4292324130 date "2022-08-17" @default.
- W4292324130 modified "2023-09-27" @default.
- W4292324130 title "Predicting social anxiety in young adults with machine learning of resting-state brain functional radiomic features" @default.
- W4292324130 cites W1548441930 @default.
- W4292324130 cites W1819104005 @default.
- W4292324130 cites W1845447069 @default.
- W4292324130 cites W1964940342 @default.
- W4292324130 cites W1998633617 @default.
- W4292324130 cites W2007213925 @default.
- W4292324130 cites W2016117011 @default.
- W4292324130 cites W2022942602 @default.
- W4292324130 cites W2041957427 @default.
- W4292324130 cites W2044490501 @default.
- W4292324130 cites W2054428623 @default.
- W4292324130 cites W2058046532 @default.
- W4292324130 cites W2060157627 @default.
- W4292324130 cites W2066246414 @default.
- W4292324130 cites W2067481238 @default.
- W4292324130 cites W2093165407 @default.
- W4292324130 cites W2100275048 @default.
- W4292324130 cites W2100634972 @default.
- W4292324130 cites W2103379881 @default.
- W4292324130 cites W2105019262 @default.
- W4292324130 cites W2113619522 @default.
- W4292324130 cites W2117140276 @default.
- W4292324130 cites W2119701343 @default.
- W4292324130 cites W2123856966 @default.
- W4292324130 cites W2123923307 @default.
- W4292324130 cites W2127870232 @default.
- W4292324130 cites W2128277170 @default.
- W4292324130 cites W2134806750 @default.
- W4292324130 cites W2136199096 @default.
- W4292324130 cites W2136794022 @default.
- W4292324130 cites W2154686286 @default.
- W4292324130 cites W2158327608 @default.
- W4292324130 cites W2166281097 @default.
- W4292324130 cites W2174661749 @default.
- W4292324130 cites W2332289829 @default.
- W4292324130 cites W2560693837 @default.
- W4292324130 cites W2560773023 @default.
- W4292324130 cites W2617132254 @default.
- W4292324130 cites W2666682081 @default.
- W4292324130 cites W2757306222 @default.
- W4292324130 cites W2763355946 @default.
- W4292324130 cites W2771401962 @default.
- W4292324130 cites W2777681379 @default.
- W4292324130 cites W2790510154 @default.
- W4292324130 cites W2792207924 @default.
- W4292324130 cites W2800076996 @default.
- W4292324130 cites W2951583631 @default.
- W4292324130 cites W3001392156 @default.
- W4292324130 cites W3033396032 @default.
- W4292324130 cites W3035110091 @default.
- W4292324130 cites W3042924061 @default.
- W4292324130 cites W3102476541 @default.
- W4292324130 cites W3164736811 @default.
- W4292324130 cites W3191294939 @default.
- W4292324130 cites W4247665917 @default.
- W4292324130 doi "https://doi.org/10.1038/s41598-022-17769-w" @default.
- W4292324130 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35977968" @default.
- W4292324130 hasPublicationYear "2022" @default.
- W4292324130 type Work @default.
- W4292324130 citedByCount "2" @default.
- W4292324130 countsByYear W42923241302023 @default.
- W4292324130 crossrefType "journal-article" @default.
- W4292324130 hasAuthorship W4292324130A5002606698 @default.
- W4292324130 hasAuthorship W4292324130A5007457176 @default.
- W4292324130 hasAuthorship W4292324130A5052074395 @default.
- W4292324130 hasAuthorship W4292324130A5078241350 @default.
- W4292324130 hasBestOaLocation W42923241301 @default.
- W4292324130 hasConcept C105795698 @default.
- W4292324130 hasConcept C118552586 @default.
- W4292324130 hasConcept C119857082 @default.
- W4292324130 hasConcept C120843803 @default.
- W4292324130 hasConcept C138885662 @default.
- W4292324130 hasConcept C154945302 @default.
- W4292324130 hasConcept C15744967 @default.
- W4292324130 hasConcept C169760540 @default.
- W4292324130 hasConcept C169900460 @default.
- W4292324130 hasConcept C180747234 @default.
- W4292324130 hasConcept C2776401178 @default.
- W4292324130 hasConcept C2776559556 @default.
- W4292324130 hasConcept C2777545354 @default.
- W4292324130 hasConcept C2779226451 @default.
- W4292324130 hasConcept C2781195155 @default.
- W4292324130 hasConcept C3018011982 @default.
- W4292324130 hasConcept C33923547 @default.
- W4292324130 hasConcept C41008148 @default.
- W4292324130 hasConcept C41895202 @default.
- W4292324130 hasConcept C522805319 @default.
- W4292324130 hasConcept C53811970 @default.
- W4292324130 hasConcept C558461103 @default.
- W4292324130 hasConcept C66324658 @default.
- W4292324130 hasConceptScore W4292324130C105795698 @default.