Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292324229> ?p ?o ?g. }
- W4292324229 endingPage "103155" @default.
- W4292324229 startingPage "103155" @default.
- W4292324229 abstract "Real-time metabolic conversion of intravenously-injected hyperpolarized [1-13C]pyruvate to [1-13C]lactate and [13C]bicarbonate in the brain can be measured using dynamic hyperpolarized carbon-13 (HP-13C) MRI. However, voxel-wise evaluation of metabolism in patients with glioma is challenged by the limited signal-to-noise ratio (SNR) of downstream 13C metabolites, especially within lesions. The purpose of this study was to evaluate the ability of higher-order singular value decomposition (HOSVD) denoising methods to enhance dynamic HP [1-13C]pyruvate MRI data acquired from patients with glioma. Dynamic HP-13C MRI were acquired from 14 patients with glioma. The effects of two HOSVD denoising techniques, tensor rank truncation-image enhancement (TRI) and global-local HOSVD (GL-HOSVD), on the SNR and kinetic modeling were analyzed in [1-13C]lactate data with simulated noise that matched the levels of [13C]bicarbonate signals. Both methods were then evaluated in patient data based on their ability to improve [1-13C]pyruvate, [1-13C]lactate and [13C]bicarbonate SNR. The effects of denoising on voxel-wise kinetic modeling of kPL and kPB was also evaluated. The number of voxels with reliable kinetic modeling of pyruvate-to-lactate (kPL) and pyruvate-to-bicarbonate (kPB) conversion rates within regions of interest (ROIs) before and after denoising was then compared. Both denoising methods improved metabolite SNR and regional signal coverage. In patient data, the average increase in peak dynamic metabolite SNR was 2-fold using TRI and 4-5 folds using GL-HOSVD denoising compared to acquired data. Denoising reduced kPL modeling errors from a native average of 23% to 16% (TRI) and 15% (GL-HOSVD); and kPB error from 42% to 34% (TRI) and 37% (GL-HOSVD) (values were averaged voxelwise over all datasets). In contrast-enhancing lesions, the average number of voxels demonstrating within-tolerance kPL modeling error relative to the total voxels increased from 48% in the original data to 84% (TRI) and 90% (GL-HOSVD), while the number of voxels showing within-tolerance kPB modeling error increased from 0% to 15% (TRI) and 8% (GL-HOSVD). Post-processing denoising methods significantly improved the SNR of dynamic HP-13C imaging data, resulting in a greater number of voxels satisfying minimum SNR criteria and maximum kinetic modeling errors in tumor lesions. This enhancement can aid in the voxel-wise analysis of HP-13C data and thereby improve monitoring of metabolic changes in patients with glioma following treatment." @default.
- W4292324229 created "2022-08-19" @default.
- W4292324229 creator A5009337952 @default.
- W4292324229 creator A5011690840 @default.
- W4292324229 creator A5030100878 @default.
- W4292324229 creator A5033011683 @default.
- W4292324229 creator A5033383368 @default.
- W4292324229 creator A5038805449 @default.
- W4292324229 creator A5044152347 @default.
- W4292324229 creator A5048416186 @default.
- W4292324229 creator A5051168746 @default.
- W4292324229 creator A5051765330 @default.
- W4292324229 creator A5052248018 @default.
- W4292324229 creator A5053437075 @default.
- W4292324229 creator A5071577908 @default.
- W4292324229 creator A5079636685 @default.
- W4292324229 creator A5084231220 @default.
- W4292324229 creator A5091257992 @default.
- W4292324229 date "2022-01-01" @default.
- W4292324229 modified "2023-10-18" @default.
- W4292324229 title "Assessment of higher-order singular value decomposition denoising methods on dynamic hyperpolarized [1-13C]pyruvate MRI data from patients with glioma" @default.
- W4292324229 cites W1975107578 @default.
- W4292324229 cites W2013912476 @default.
- W4292324229 cites W2059784307 @default.
- W4292324229 cites W2059900570 @default.
- W4292324229 cites W2072451938 @default.
- W4292324229 cites W2125993358 @default.
- W4292324229 cites W2129716919 @default.
- W4292324229 cites W2136573752 @default.
- W4292324229 cites W2137762696 @default.
- W4292324229 cites W2151354228 @default.
- W4292324229 cites W2154011501 @default.
- W4292324229 cites W2285987116 @default.
- W4292324229 cites W2605601662 @default.
- W4292324229 cites W2771189159 @default.
- W4292324229 cites W2783916060 @default.
- W4292324229 cites W2804495644 @default.
- W4292324229 cites W2809492714 @default.
- W4292324229 cites W2892266580 @default.
- W4292324229 cites W2899146703 @default.
- W4292324229 cites W2910792831 @default.
- W4292324229 cites W2913635393 @default.
- W4292324229 cites W2918344699 @default.
- W4292324229 cites W2928537285 @default.
- W4292324229 cites W2955499001 @default.
- W4292324229 cites W2963091230 @default.
- W4292324229 cites W2973007151 @default.
- W4292324229 cites W2977177663 @default.
- W4292324229 cites W3006571675 @default.
- W4292324229 cites W3010887570 @default.
- W4292324229 cites W3012050913 @default.
- W4292324229 cites W3034032262 @default.
- W4292324229 cites W3037768000 @default.
- W4292324229 cites W3044694328 @default.
- W4292324229 cites W3044896809 @default.
- W4292324229 cites W3113318754 @default.
- W4292324229 cites W3130054030 @default.
- W4292324229 cites W3138392633 @default.
- W4292324229 cites W3176463116 @default.
- W4292324229 cites W3176975808 @default.
- W4292324229 cites W3193391019 @default.
- W4292324229 doi "https://doi.org/10.1016/j.nicl.2022.103155" @default.
- W4292324229 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36007439" @default.
- W4292324229 hasPublicationYear "2022" @default.
- W4292324229 type Work @default.
- W4292324229 citedByCount "6" @default.
- W4292324229 countsByYear W42923242292023 @default.
- W4292324229 crossrefType "journal-article" @default.
- W4292324229 hasAuthorship W4292324229A5009337952 @default.
- W4292324229 hasAuthorship W4292324229A5011690840 @default.
- W4292324229 hasAuthorship W4292324229A5030100878 @default.
- W4292324229 hasAuthorship W4292324229A5033011683 @default.
- W4292324229 hasAuthorship W4292324229A5033383368 @default.
- W4292324229 hasAuthorship W4292324229A5038805449 @default.
- W4292324229 hasAuthorship W4292324229A5044152347 @default.
- W4292324229 hasAuthorship W4292324229A5048416186 @default.
- W4292324229 hasAuthorship W4292324229A5051168746 @default.
- W4292324229 hasAuthorship W4292324229A5051765330 @default.
- W4292324229 hasAuthorship W4292324229A5052248018 @default.
- W4292324229 hasAuthorship W4292324229A5053437075 @default.
- W4292324229 hasAuthorship W4292324229A5071577908 @default.
- W4292324229 hasAuthorship W4292324229A5079636685 @default.
- W4292324229 hasAuthorship W4292324229A5084231220 @default.
- W4292324229 hasAuthorship W4292324229A5091257992 @default.
- W4292324229 hasBestOaLocation W42923242291 @default.
- W4292324229 hasConcept C121332964 @default.
- W4292324229 hasConcept C154945302 @default.
- W4292324229 hasConcept C185592680 @default.
- W4292324229 hasConcept C22789450 @default.
- W4292324229 hasConcept C2778227246 @default.
- W4292324229 hasConcept C2989005 @default.
- W4292324229 hasConcept C41008148 @default.
- W4292324229 hasConcept C46141821 @default.
- W4292324229 hasConcept C502942594 @default.
- W4292324229 hasConcept C54170458 @default.
- W4292324229 hasConcept C71924100 @default.
- W4292324229 hasConceptScore W4292324229C121332964 @default.
- W4292324229 hasConceptScore W4292324229C154945302 @default.