Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292333043> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4292333043 endingPage "4752" @default.
- W4292333043 startingPage "4746" @default.
- W4292333043 abstract "Emotion recognition is an important field of research in Brain Computer Interactions. As technology and the understanding of emotions are advancing, there are growing opportunities for automatic emotion recognition systems. Neural networks are a family of statistical learning models inspired by biological neural networks and are used to estimate functions that can depend on a large number of inputs that are generally unknown. In this paper we seek to use this effectiveness of Neural Networks to classify user emotions using EEG signals from the DEAP (Koelstra et al (2012)) dataset which represents the benchmark for Emotion classification research. We explore 2 different Neural Models, a simple Deep Neural Network and a Convolutional Neural Network for classification. Our model provides the state-of-the-art classification accuracy, obtaining 4.51 and 4.96 percentage point improvements over (Rozgic et al (2013)) classification of Valence and Arousal into 2 classes (High and Low) and 13.39 and 6.58 percentage point improvements over (Chung and Yoon(2012)) classification of Valence and Arousal into 3 classes (High, Normal and Low). Moreover our research is a testament that Neural Networks could be robust classifiers for brain signals, even outperforming traditional learning techniques." @default.
- W4292333043 created "2022-08-19" @default.
- W4292333043 creator A5001997489 @default.
- W4292333043 creator A5011223914 @default.
- W4292333043 creator A5013726668 @default.
- W4292333043 creator A5022509818 @default.
- W4292333043 creator A5038892589 @default.
- W4292333043 date "2017-02-11" @default.
- W4292333043 modified "2023-10-06" @default.
- W4292333043 title "Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Data" @default.
- W4292333043 doi "https://doi.org/10.1609/aaai.v31i2.19105" @default.
- W4292333043 hasPublicationYear "2017" @default.
- W4292333043 type Work @default.
- W4292333043 citedByCount "121" @default.
- W4292333043 countsByYear W42923330432017 @default.
- W4292333043 countsByYear W42923330432018 @default.
- W4292333043 countsByYear W42923330432019 @default.
- W4292333043 countsByYear W42923330432020 @default.
- W4292333043 countsByYear W42923330432021 @default.
- W4292333043 countsByYear W42923330432022 @default.
- W4292333043 countsByYear W42923330432023 @default.
- W4292333043 crossrefType "journal-article" @default.
- W4292333043 hasAuthorship W4292333043A5001997489 @default.
- W4292333043 hasAuthorship W4292333043A5011223914 @default.
- W4292333043 hasAuthorship W4292333043A5013726668 @default.
- W4292333043 hasAuthorship W4292333043A5022509818 @default.
- W4292333043 hasAuthorship W4292333043A5038892589 @default.
- W4292333043 hasConcept C108583219 @default.
- W4292333043 hasConcept C119857082 @default.
- W4292333043 hasConcept C121332964 @default.
- W4292333043 hasConcept C153180895 @default.
- W4292333043 hasConcept C154945302 @default.
- W4292333043 hasConcept C15744967 @default.
- W4292333043 hasConcept C168900304 @default.
- W4292333043 hasConcept C169760540 @default.
- W4292333043 hasConcept C206310091 @default.
- W4292333043 hasConcept C36951298 @default.
- W4292333043 hasConcept C41008148 @default.
- W4292333043 hasConcept C50644808 @default.
- W4292333043 hasConcept C62520636 @default.
- W4292333043 hasConcept C81363708 @default.
- W4292333043 hasConceptScore W4292333043C108583219 @default.
- W4292333043 hasConceptScore W4292333043C119857082 @default.
- W4292333043 hasConceptScore W4292333043C121332964 @default.
- W4292333043 hasConceptScore W4292333043C153180895 @default.
- W4292333043 hasConceptScore W4292333043C154945302 @default.
- W4292333043 hasConceptScore W4292333043C15744967 @default.
- W4292333043 hasConceptScore W4292333043C168900304 @default.
- W4292333043 hasConceptScore W4292333043C169760540 @default.
- W4292333043 hasConceptScore W4292333043C206310091 @default.
- W4292333043 hasConceptScore W4292333043C36951298 @default.
- W4292333043 hasConceptScore W4292333043C41008148 @default.
- W4292333043 hasConceptScore W4292333043C50644808 @default.
- W4292333043 hasConceptScore W4292333043C62520636 @default.
- W4292333043 hasConceptScore W4292333043C81363708 @default.
- W4292333043 hasIssue "2" @default.
- W4292333043 hasLocation W42923330431 @default.
- W4292333043 hasOpenAccess W4292333043 @default.
- W4292333043 hasPrimaryLocation W42923330431 @default.
- W4292333043 hasRelatedWork W2731899572 @default.
- W4292333043 hasRelatedWork W2999805992 @default.
- W4292333043 hasRelatedWork W3116150086 @default.
- W4292333043 hasRelatedWork W3133861977 @default.
- W4292333043 hasRelatedWork W3180630304 @default.
- W4292333043 hasRelatedWork W4200173597 @default.
- W4292333043 hasRelatedWork W4291897433 @default.
- W4292333043 hasRelatedWork W4312417841 @default.
- W4292333043 hasRelatedWork W4321369474 @default.
- W4292333043 hasRelatedWork W4380075502 @default.
- W4292333043 hasVolume "31" @default.
- W4292333043 isParatext "false" @default.
- W4292333043 isRetracted "false" @default.
- W4292333043 workType "article" @default.