Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292377237> ?p ?o ?g. }
- W4292377237 endingPage "3116" @default.
- W4292377237 startingPage "3096" @default.
- W4292377237 abstract "Ensemble learning methods, such as boosting, focus on producing a strong classifier based on numerous weak classifiers. In this paper, we develop a novel ensemble learning method called rescaled boosting with truncation (ReBooT) for binary classification by combining well-known rescaling and regularization ideas in boosting. Theoretically, we present some sufficient conditions for the convergence of ReBooT, derive an almost optimal numerical convergence rate, and deduce fast-learning rates in the framework of statistical learning theory. Experimentally, we conduct both toy simulations and four real-world data runs to show the power of ReBooT. Our results show that, compared with the existing boosting algorithms, ReBooT possesses better learning performance and interpretability in terms of solid theoretical guarantees, perfect structure constraints, and good prediction performance. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning Funding: This work was supported by the National Natural Science Foundation of China [Grants 11971374, 61772374, and 61876133]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2022.1224 ." @default.
- W4292377237 created "2022-08-20" @default.
- W4292377237 creator A5018069042 @default.
- W4292377237 creator A5022287632 @default.
- W4292377237 creator A5027181407 @default.
- W4292377237 creator A5050393292 @default.
- W4292377237 date "2022-11-01" @default.
- W4292377237 modified "2023-09-24" @default.
- W4292377237 title "Toward Efficient Ensemble Learning with Structure Constraints: Convergent Algorithms and Applications" @default.
- W4292377237 cites W1484867920 @default.
- W4292377237 cites W1509805685 @default.
- W4292377237 cites W1678356000 @default.
- W4292377237 cites W1970524360 @default.
- W4292377237 cites W1988790447 @default.
- W4292377237 cites W1994642189 @default.
- W4292377237 cites W2003585400 @default.
- W4292377237 cites W2012501405 @default.
- W4292377237 cites W2023163512 @default.
- W4292377237 cites W2024046085 @default.
- W4292377237 cites W2034978228 @default.
- W4292377237 cites W2037842665 @default.
- W4292377237 cites W2043919728 @default.
- W4292377237 cites W2045079045 @default.
- W4292377237 cites W2051922388 @default.
- W4292377237 cites W2070534370 @default.
- W4292377237 cites W2076095618 @default.
- W4292377237 cites W2076126353 @default.
- W4292377237 cites W2082710801 @default.
- W4292377237 cites W2107710404 @default.
- W4292377237 cites W2110652811 @default.
- W4292377237 cites W2124761764 @default.
- W4292377237 cites W2136922672 @default.
- W4292377237 cites W2153603168 @default.
- W4292377237 cites W2160741287 @default.
- W4292377237 cites W2167732364 @default.
- W4292377237 cites W2257979135 @default.
- W4292377237 cites W2528144111 @default.
- W4292377237 cites W2594741298 @default.
- W4292377237 cites W2604519558 @default.
- W4292377237 cites W2615421548 @default.
- W4292377237 cites W2618530766 @default.
- W4292377237 cites W2623329600 @default.
- W4292377237 cites W2684262445 @default.
- W4292377237 cites W2884001105 @default.
- W4292377237 cites W2885648442 @default.
- W4292377237 cites W2908274500 @default.
- W4292377237 cites W2961238573 @default.
- W4292377237 cites W2963613337 @default.
- W4292377237 cites W2975867066 @default.
- W4292377237 cites W3038400462 @default.
- W4292377237 cites W3098897816 @default.
- W4292377237 cites W3100915013 @default.
- W4292377237 cites W3122054577 @default.
- W4292377237 cites W4211080438 @default.
- W4292377237 cites W4212883601 @default.
- W4292377237 cites W4238546739 @default.
- W4292377237 cites W4297944103 @default.
- W4292377237 doi "https://doi.org/10.1287/ijoc.2022.1224" @default.
- W4292377237 hasPublicationYear "2022" @default.
- W4292377237 type Work @default.
- W4292377237 citedByCount "0" @default.
- W4292377237 crossrefType "journal-article" @default.
- W4292377237 hasAuthorship W4292377237A5018069042 @default.
- W4292377237 hasAuthorship W4292377237A5022287632 @default.
- W4292377237 hasAuthorship W4292377237A5027181407 @default.
- W4292377237 hasAuthorship W4292377237A5050393292 @default.
- W4292377237 hasConcept C111919701 @default.
- W4292377237 hasConcept C11413529 @default.
- W4292377237 hasConcept C119857082 @default.
- W4292377237 hasConcept C120524526 @default.
- W4292377237 hasConcept C154945302 @default.
- W4292377237 hasConcept C2781067378 @default.
- W4292377237 hasConcept C41008148 @default.
- W4292377237 hasConcept C45942800 @default.
- W4292377237 hasConcept C46686674 @default.
- W4292377237 hasConceptScore W4292377237C111919701 @default.
- W4292377237 hasConceptScore W4292377237C11413529 @default.
- W4292377237 hasConceptScore W4292377237C119857082 @default.
- W4292377237 hasConceptScore W4292377237C120524526 @default.
- W4292377237 hasConceptScore W4292377237C154945302 @default.
- W4292377237 hasConceptScore W4292377237C2781067378 @default.
- W4292377237 hasConceptScore W4292377237C41008148 @default.
- W4292377237 hasConceptScore W4292377237C45942800 @default.
- W4292377237 hasConceptScore W4292377237C46686674 @default.
- W4292377237 hasIssue "6" @default.
- W4292377237 hasLocation W42923772371 @default.
- W4292377237 hasOpenAccess W4292377237 @default.
- W4292377237 hasPrimaryLocation W42923772371 @default.
- W4292377237 hasRelatedWork W3028778360 @default.
- W4292377237 hasRelatedWork W3047971515 @default.
- W4292377237 hasRelatedWork W3101544650 @default.
- W4292377237 hasRelatedWork W3216981378 @default.
- W4292377237 hasRelatedWork W4225307033 @default.
- W4292377237 hasRelatedWork W4226022663 @default.
- W4292377237 hasRelatedWork W4292969247 @default.
- W4292377237 hasRelatedWork W4293069612 @default.
- W4292377237 hasRelatedWork W4312886011 @default.
- W4292377237 hasRelatedWork W4313488044 @default.