Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292380329> ?p ?o ?g. }
- W4292380329 endingPage "121066" @default.
- W4292380329 startingPage "121066" @default.
- W4292380329 abstract "Rare earth elements (REE) are sensitive tracers of rock-water interactions and soil formation processes. In this study, we investigated the REE concentration and distribution patterns for both bulk samples and acid leachable phase for a series of regolith and soil profiles developed on a deeply weathered granite hillslope in a subtropical climate. The exogenous input had little impact on the REE distributions on the studied hillslope. The REE distribution in the profiles was controlled by changes in the physical and chemical environmental parameters and mineral transformation during weathering. However, the specific mechanisms differed among the different weathering stages and profiles located at different positions along the slope. Among the environmental parameters, the profile redox state and acidity were the dominant factors controlling the REE behavior, with organic materials as the main regulators. A strong positive relationship between chemical index of alteration (CIA) and La/Yb was observed for the regolith samples, but the La/Yb ratio decreased upward from a depth of 120 cm (the bottom depth of the soil horizon) as the CIA value increased, suggesting a preference for light REE (LREE) fixation in kaolinite formed during the dissolution of feldspar; however, a conversion occurred during the subsequent pedogenesis period. The hilltop soil profile was characterized by the strongest LREE depletion and the highest positive Ce anomaly (~7.31–14.28), compared with other profiles down the hillslope (~0.84–2.78). The strongest LREE depletion on the hilltop profile JLN-S4 suggested a preference for LREE release resulting from the transformation of kaolinite to gibbsite, and the highest Ce anomaly indicates that Ce was fixed in a more oxidized environment within a well-drained profile. The hill foot profile JLN-S1 had the highest LREE leaching rate, but also the lowest heavy REE (HREE) leaching rate, which was ascribed to its lowest erosion rate, lowest pH value, and reductive conditions in a more hydromorphic zone down the hill. The releasing rates of REE calculated by a mass balance model at different positions along the catena ranged from 1395 to 14,379 μg m−2y−1. All the observed REE fractionation regimes and weathering rate variations along the hillslope illustrated that topography-regulated hydrologic condition played a critical role in the release and migration of REE during granite weathering." @default.
- W4292380329 created "2022-08-20" @default.
- W4292380329 creator A5000554967 @default.
- W4292380329 creator A5007348590 @default.
- W4292380329 creator A5015949314 @default.
- W4292380329 creator A5031720142 @default.
- W4292380329 creator A5037634210 @default.
- W4292380329 creator A5044313351 @default.
- W4292380329 creator A5044592033 @default.
- W4292380329 date "2022-11-01" @default.
- W4292380329 modified "2023-10-15" @default.
- W4292380329 title "Weathering stage and topographic control on rare earth element (REE) behavior: New constraints from a deeply weathered granite hill" @default.
- W4292380329 cites W1682784642 @default.
- W4292380329 cites W1858659914 @default.
- W4292380329 cites W1968593691 @default.
- W4292380329 cites W1972778748 @default.
- W4292380329 cites W1975708926 @default.
- W4292380329 cites W1979877704 @default.
- W4292380329 cites W1988386541 @default.
- W4292380329 cites W1989501580 @default.
- W4292380329 cites W1990173800 @default.
- W4292380329 cites W1992111210 @default.
- W4292380329 cites W1994109027 @default.
- W4292380329 cites W1997446265 @default.
- W4292380329 cites W1999412610 @default.
- W4292380329 cites W2002606625 @default.
- W4292380329 cites W2011801766 @default.
- W4292380329 cites W2015996529 @default.
- W4292380329 cites W2017049943 @default.
- W4292380329 cites W2020806066 @default.
- W4292380329 cites W2025354930 @default.
- W4292380329 cites W2026412695 @default.
- W4292380329 cites W2029401070 @default.
- W4292380329 cites W2034543802 @default.
- W4292380329 cites W2035750259 @default.
- W4292380329 cites W2037700761 @default.
- W4292380329 cites W2038631041 @default.
- W4292380329 cites W2041167308 @default.
- W4292380329 cites W2048898834 @default.
- W4292380329 cites W2052208726 @default.
- W4292380329 cites W2054424460 @default.
- W4292380329 cites W2055070367 @default.
- W4292380329 cites W2059675029 @default.
- W4292380329 cites W2062115200 @default.
- W4292380329 cites W2064123750 @default.
- W4292380329 cites W2068815439 @default.
- W4292380329 cites W2071477980 @default.
- W4292380329 cites W2072236500 @default.
- W4292380329 cites W2077140115 @default.
- W4292380329 cites W2077715404 @default.
- W4292380329 cites W2084135529 @default.
- W4292380329 cites W2087937118 @default.
- W4292380329 cites W2097300868 @default.
- W4292380329 cites W2113881893 @default.
- W4292380329 cites W2122730526 @default.
- W4292380329 cites W2128239598 @default.
- W4292380329 cites W2159460537 @default.
- W4292380329 cites W2168450335 @default.
- W4292380329 cites W2172110645 @default.
- W4292380329 cites W2206852210 @default.
- W4292380329 cites W2282036201 @default.
- W4292380329 cites W2504124475 @default.
- W4292380329 cites W2524055445 @default.
- W4292380329 cites W2528270759 @default.
- W4292380329 cites W2590352636 @default.
- W4292380329 cites W2591535859 @default.
- W4292380329 cites W2671517711 @default.
- W4292380329 cites W2713042665 @default.
- W4292380329 cites W2775502653 @default.
- W4292380329 cites W2801945926 @default.
- W4292380329 cites W2888193541 @default.
- W4292380329 cites W2891232109 @default.
- W4292380329 cites W2899096942 @default.
- W4292380329 cites W2944379472 @default.
- W4292380329 cites W2973229351 @default.
- W4292380329 cites W2980010834 @default.
- W4292380329 cites W2998275588 @default.
- W4292380329 cites W3126394004 @default.
- W4292380329 cites W3162544071 @default.
- W4292380329 doi "https://doi.org/10.1016/j.chemgeo.2022.121066" @default.
- W4292380329 hasPublicationYear "2022" @default.
- W4292380329 type Work @default.
- W4292380329 citedByCount "3" @default.
- W4292380329 countsByYear W42923803292023 @default.
- W4292380329 crossrefType "journal-article" @default.
- W4292380329 hasAuthorship W4292380329A5000554967 @default.
- W4292380329 hasAuthorship W4292380329A5007348590 @default.
- W4292380329 hasAuthorship W4292380329A5015949314 @default.
- W4292380329 hasAuthorship W4292380329A5031720142 @default.
- W4292380329 hasAuthorship W4292380329A5037634210 @default.
- W4292380329 hasAuthorship W4292380329A5044313351 @default.
- W4292380329 hasAuthorship W4292380329A5044592033 @default.
- W4292380329 hasConcept C121332964 @default.
- W4292380329 hasConcept C127313418 @default.
- W4292380329 hasConcept C1276947 @default.
- W4292380329 hasConcept C151730666 @default.
- W4292380329 hasConcept C155843905 @default.
- W4292380329 hasConcept C156634047 @default.