Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292383670> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4292383670 endingPage "277" @default.
- W4292383670 startingPage "268" @default.
- W4292383670 abstract "Data-driven diagnosis methods have been systematically investigated for the diagnosis of gas-insulated switchgear (GIS) partial discharge (PD). However, because of the scarcity of samples on-site, an operational gap exists between the diagnostic methods and their actual application. To settle this issue, a novel metric-based meta-learning (MBML) method is proposed. First, a hybrid self-attention convolutional neural network is constructed for feature extraction and trained through supervised learning. Then, the episodic MBML is used to train other parts, and the metric classifier is employed for diagnosis. The proposed MBML exhibits an accuracy of 93.17% under 4-way 5-shot conditions, which is a significant improvement over traditional methods. When the number of support sets is small, the benefits of MBML are more prominent, providing a viable solution for the on-site diagnosis of PD in GISs." @default.
- W4292383670 created "2022-08-20" @default.
- W4292383670 creator A5054775292 @default.
- W4292383670 creator A5054858647 @default.
- W4292383670 creator A5064317688 @default.
- W4292383670 creator A5074357770 @default.
- W4292383670 creator A5077575255 @default.
- W4292383670 creator A5083417541 @default.
- W4292383670 date "2023-03-01" @default.
- W4292383670 modified "2023-09-27" @default.
- W4292383670 title "Novel metric-based meta-learning model for few-shot diagnosis of partial discharge in a gas-insulated switchgear" @default.
- W4292383670 cites W2110935841 @default.
- W4292383670 cites W2798915202 @default.
- W4292383670 cites W2949491127 @default.
- W4292383670 cites W2962807656 @default.
- W4292383670 cites W2963195150 @default.
- W4292383670 cites W3027585699 @default.
- W4292383670 cites W3041076719 @default.
- W4292383670 cites W3080367886 @default.
- W4292383670 cites W3084720100 @default.
- W4292383670 cites W3124057057 @default.
- W4292383670 cites W3126446664 @default.
- W4292383670 cites W3128553897 @default.
- W4292383670 cites W3132422289 @default.
- W4292383670 cites W3134397144 @default.
- W4292383670 cites W3135354621 @default.
- W4292383670 cites W3139302692 @default.
- W4292383670 cites W3153043006 @default.
- W4292383670 cites W3174485934 @default.
- W4292383670 cites W3185972919 @default.
- W4292383670 cites W3192354942 @default.
- W4292383670 cites W3196842521 @default.
- W4292383670 cites W3198038800 @default.
- W4292383670 cites W3207060562 @default.
- W4292383670 cites W4211058054 @default.
- W4292383670 doi "https://doi.org/10.1016/j.isatra.2022.08.009" @default.
- W4292383670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36050144" @default.
- W4292383670 hasPublicationYear "2023" @default.
- W4292383670 type Work @default.
- W4292383670 citedByCount "2" @default.
- W4292383670 countsByYear W42923836702023 @default.
- W4292383670 crossrefType "journal-article" @default.
- W4292383670 hasAuthorship W4292383670A5054775292 @default.
- W4292383670 hasAuthorship W4292383670A5054858647 @default.
- W4292383670 hasAuthorship W4292383670A5064317688 @default.
- W4292383670 hasAuthorship W4292383670A5074357770 @default.
- W4292383670 hasAuthorship W4292383670A5077575255 @default.
- W4292383670 hasAuthorship W4292383670A5083417541 @default.
- W4292383670 hasConcept C119599485 @default.
- W4292383670 hasConcept C119857082 @default.
- W4292383670 hasConcept C124101348 @default.
- W4292383670 hasConcept C127413603 @default.
- W4292383670 hasConcept C130143024 @default.
- W4292383670 hasConcept C153180895 @default.
- W4292383670 hasConcept C154945302 @default.
- W4292383670 hasConcept C165801399 @default.
- W4292383670 hasConcept C176217482 @default.
- W4292383670 hasConcept C21547014 @default.
- W4292383670 hasConcept C41008148 @default.
- W4292383670 hasConcept C52622490 @default.
- W4292383670 hasConcept C78519656 @default.
- W4292383670 hasConcept C81363708 @default.
- W4292383670 hasConcept C93893174 @default.
- W4292383670 hasConcept C95623464 @default.
- W4292383670 hasConceptScore W4292383670C119599485 @default.
- W4292383670 hasConceptScore W4292383670C119857082 @default.
- W4292383670 hasConceptScore W4292383670C124101348 @default.
- W4292383670 hasConceptScore W4292383670C127413603 @default.
- W4292383670 hasConceptScore W4292383670C130143024 @default.
- W4292383670 hasConceptScore W4292383670C153180895 @default.
- W4292383670 hasConceptScore W4292383670C154945302 @default.
- W4292383670 hasConceptScore W4292383670C165801399 @default.
- W4292383670 hasConceptScore W4292383670C176217482 @default.
- W4292383670 hasConceptScore W4292383670C21547014 @default.
- W4292383670 hasConceptScore W4292383670C41008148 @default.
- W4292383670 hasConceptScore W4292383670C52622490 @default.
- W4292383670 hasConceptScore W4292383670C78519656 @default.
- W4292383670 hasConceptScore W4292383670C81363708 @default.
- W4292383670 hasConceptScore W4292383670C93893174 @default.
- W4292383670 hasConceptScore W4292383670C95623464 @default.
- W4292383670 hasLocation W42923836701 @default.
- W4292383670 hasLocation W42923836702 @default.
- W4292383670 hasOpenAccess W4292383670 @default.
- W4292383670 hasPrimaryLocation W42923836701 @default.
- W4292383670 hasRelatedWork W2024981452 @default.
- W4292383670 hasRelatedWork W2146076056 @default.
- W4292383670 hasRelatedWork W2386733804 @default.
- W4292383670 hasRelatedWork W2801946776 @default.
- W4292383670 hasRelatedWork W2811390910 @default.
- W4292383670 hasRelatedWork W2913302899 @default.
- W4292383670 hasRelatedWork W4212885523 @default.
- W4292383670 hasRelatedWork W4225852842 @default.
- W4292383670 hasRelatedWork W4287776258 @default.
- W4292383670 hasRelatedWork W4312376745 @default.
- W4292383670 hasVolume "134" @default.
- W4292383670 isParatext "false" @default.
- W4292383670 isRetracted "false" @default.
- W4292383670 workType "article" @default.