Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292387412> ?p ?o ?g. }
- W4292387412 endingPage "6816" @default.
- W4292387412 startingPage "6804" @default.
- W4292387412 abstract "Monitoring water bodies from remote sensing data is certainly an essential task to supervise the actual conditions of the available water resources for environment conservation, sustainable development and many other applications. Being Sentinel-2 images some of the most attractive data, existing traditional index-based and deep learning-based water extraction methods still have important limitations to effectively deal with large heterogeneous areas since many types of water bodies with different spatial-spectral complexities are logically expected. Note that, in this scenario, optimal feature abstraction and neighbourhood information may certainly vary from water to water pixel, however existing methods are generally constrained by a fix abstraction level and amount of land cover context. To address these issues, this paper presents a new attentional dense convolutional neural network (AD-CNN) specially designed for water body extraction from Sentinel-2 imagery. On the one hand, AD-CNN exploits dense connections to allow uncovering deeper features while simultaneously characterizing multiple data complexities. On the other hand, the proposed model also implements a new residual attention module to dynamically put the focus on the most relevant spatial-spectral features for classifying water pixels. To test the performance of AD-CNN, a new water database of Nepal (WaterPAL) is also built. The conducted experiments reveal the competitive performance of the proposed architecture with respect to several traditional index-based and state-of-the-art deep learning-based water extraction models. The codes and data related to this paper will be accessible on <uri>https://github.com/rufernan/ADCNN</uri>." @default.
- W4292387412 created "2022-08-20" @default.
- W4292387412 creator A5025400834 @default.
- W4292387412 creator A5049420721 @default.
- W4292387412 creator A5071162412 @default.
- W4292387412 creator A5086443350 @default.
- W4292387412 date "2022-01-01" @default.
- W4292387412 modified "2023-10-18" @default.
- W4292387412 title "Attentional Dense Convolutional Neural Network for Water Body Extraction From Sentinel-2 Images" @default.
- W4292387412 cites W1978617972 @default.
- W4292387412 cites W2005185459 @default.
- W4292387412 cites W2024689500 @default.
- W4292387412 cites W2036492072 @default.
- W4292387412 cites W2036841511 @default.
- W4292387412 cites W2047549267 @default.
- W4292387412 cites W2056435747 @default.
- W4292387412 cites W2072895218 @default.
- W4292387412 cites W2101678239 @default.
- W4292387412 cites W2123037154 @default.
- W4292387412 cites W2145087958 @default.
- W4292387412 cites W2192538484 @default.
- W4292387412 cites W2194775991 @default.
- W4292387412 cites W2336807904 @default.
- W4292387412 cites W2343061342 @default.
- W4292387412 cites W2470208725 @default.
- W4292387412 cites W2499899645 @default.
- W4292387412 cites W2604937949 @default.
- W4292387412 cites W2620249041 @default.
- W4292387412 cites W2623913549 @default.
- W4292387412 cites W2626103317 @default.
- W4292387412 cites W2749751926 @default.
- W4292387412 cites W2769187448 @default.
- W4292387412 cites W2802942478 @default.
- W4292387412 cites W2803941375 @default.
- W4292387412 cites W2805751255 @default.
- W4292387412 cites W2810893805 @default.
- W4292387412 cites W2811244448 @default.
- W4292387412 cites W2887091102 @default.
- W4292387412 cites W2895940107 @default.
- W4292387412 cites W2945472816 @default.
- W4292387412 cites W2945506867 @default.
- W4292387412 cites W2961466663 @default.
- W4292387412 cites W2963495494 @default.
- W4292387412 cites W2967493388 @default.
- W4292387412 cites W2983376237 @default.
- W4292387412 cites W2991616716 @default.
- W4292387412 cites W2998927173 @default.
- W4292387412 cites W3013368467 @default.
- W4292387412 cites W3043181422 @default.
- W4292387412 cites W3080078967 @default.
- W4292387412 cites W3118804988 @default.
- W4292387412 cites W3163489199 @default.
- W4292387412 cites W3182056459 @default.
- W4292387412 cites W3205020875 @default.
- W4292387412 cites W4285283170 @default.
- W4292387412 doi "https://doi.org/10.1109/jstars.2022.3198497" @default.
- W4292387412 hasPublicationYear "2022" @default.
- W4292387412 type Work @default.
- W4292387412 citedByCount "6" @default.
- W4292387412 countsByYear W42923874122022 @default.
- W4292387412 countsByYear W42923874122023 @default.
- W4292387412 crossrefType "journal-article" @default.
- W4292387412 hasAuthorship W4292387412A5025400834 @default.
- W4292387412 hasAuthorship W4292387412A5049420721 @default.
- W4292387412 hasAuthorship W4292387412A5071162412 @default.
- W4292387412 hasAuthorship W4292387412A5086443350 @default.
- W4292387412 hasBestOaLocation W42923874121 @default.
- W4292387412 hasConcept C108583219 @default.
- W4292387412 hasConcept C111472728 @default.
- W4292387412 hasConcept C119857082 @default.
- W4292387412 hasConcept C124101348 @default.
- W4292387412 hasConcept C124304363 @default.
- W4292387412 hasConcept C138885662 @default.
- W4292387412 hasConcept C151730666 @default.
- W4292387412 hasConcept C153180895 @default.
- W4292387412 hasConcept C154945302 @default.
- W4292387412 hasConcept C162324750 @default.
- W4292387412 hasConcept C165696696 @default.
- W4292387412 hasConcept C187736073 @default.
- W4292387412 hasConcept C2779343474 @default.
- W4292387412 hasConcept C2780451532 @default.
- W4292387412 hasConcept C38652104 @default.
- W4292387412 hasConcept C41008148 @default.
- W4292387412 hasConcept C52622490 @default.
- W4292387412 hasConcept C81363708 @default.
- W4292387412 hasConcept C86803240 @default.
- W4292387412 hasConceptScore W4292387412C108583219 @default.
- W4292387412 hasConceptScore W4292387412C111472728 @default.
- W4292387412 hasConceptScore W4292387412C119857082 @default.
- W4292387412 hasConceptScore W4292387412C124101348 @default.
- W4292387412 hasConceptScore W4292387412C124304363 @default.
- W4292387412 hasConceptScore W4292387412C138885662 @default.
- W4292387412 hasConceptScore W4292387412C151730666 @default.
- W4292387412 hasConceptScore W4292387412C153180895 @default.
- W4292387412 hasConceptScore W4292387412C154945302 @default.
- W4292387412 hasConceptScore W4292387412C162324750 @default.
- W4292387412 hasConceptScore W4292387412C165696696 @default.
- W4292387412 hasConceptScore W4292387412C187736073 @default.