Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292403669> ?p ?o ?g. }
- W4292403669 endingPage "100440" @default.
- W4292403669 startingPage "100440" @default.
- W4292403669 abstract "The novelty of this work rests upon the use of the domain partitioning technique in time variable when discretizing the domain of solution in spectral collocation algorithm. The single domain multivariate spectral collocation based methods have been proven to be effective in solving time-dependent partial differential equations (PDEs) defined over small time domains. However, there is a significant loss of accuracy as time computational domain proliferates and also when the number of grid nodes approaches a definite particular number. Therefore, the establishment of the new innovative multi-domain multivariate spectral quasilinearisation method (MDMV-SQLM) is described for the purpose of solving (2+1) dimensional nonlinear PDEs defined on large time intervals. The main output of this study is confirmation that minimizing the size of time computational domain at each subinterval assures sufficiently accurate results that are attained using minimal number of nodal points and less computational time. The solution algorithm involves partitioning the time domain into multiple non-overlapping sub-domains, simplification of the nonlinear PDEs using the quasilinearisation method and assumption of approximate solutions using triple Lagrange interpolating polynomials with Chebyshev–Gauss–Lobatto (CGL) points. The multi-domain spectral collocation procedure is executed on the linear systems of algebraic equations, where the subsequent matrix systems are solved separately in every time sub-interval with the continuity equation essentially used in obtaining initial conditions in the next subintervals. MATLAB software is used to implement the solution algorithm and numerical results are demonstrated graphically and in tabular form. To highlight the efficaciousness and accuracy of the MDMV-SQLM, error estimates, condition numbers and computational time are presented for well known (2+1) dimensional nonlinear initial-Dirichlet boundary value problems. The adoption of the domain decomposition technique is efficacious in suppressing the numerical challenges linked to large matrices and ill-conditioned nature of the resulting coefficient matrix. Also, the communicated results confirm that the numerical scheme is computationally cheap, fast and yield extremely accurate and stable results with the aid of fewer number of grid points for large time domains." @default.
- W4292403669 created "2022-08-20" @default.
- W4292403669 creator A5033437569 @default.
- W4292403669 creator A5072317368 @default.
- W4292403669 creator A5075682042 @default.
- W4292403669 date "2022-12-01" @default.
- W4292403669 modified "2023-10-01" @default.
- W4292403669 title "Multi-domain multivariate spectral collocation method for (2+1) dimensional nonlinear partial differential equations" @default.
- W4292403669 cites W1996133247 @default.
- W4292403669 cites W2004864292 @default.
- W4292403669 cites W2023105121 @default.
- W4292403669 cites W2025178570 @default.
- W4292403669 cites W2032873066 @default.
- W4292403669 cites W2034142135 @default.
- W4292403669 cites W2036101942 @default.
- W4292403669 cites W2036680613 @default.
- W4292403669 cites W2051078808 @default.
- W4292403669 cites W2075041225 @default.
- W4292403669 cites W2079285567 @default.
- W4292403669 cites W2110034415 @default.
- W4292403669 cites W2135359007 @default.
- W4292403669 cites W2142644878 @default.
- W4292403669 cites W2154392717 @default.
- W4292403669 cites W2341120393 @default.
- W4292403669 cites W2531659778 @default.
- W4292403669 cites W2552328718 @default.
- W4292403669 cites W2601034949 @default.
- W4292403669 cites W2602333721 @default.
- W4292403669 cites W2804759482 @default.
- W4292403669 cites W2898199647 @default.
- W4292403669 cites W2948736605 @default.
- W4292403669 cites W2949629617 @default.
- W4292403669 cites W3041281016 @default.
- W4292403669 cites W3048378000 @default.
- W4292403669 cites W3087876565 @default.
- W4292403669 cites W3095916904 @default.
- W4292403669 cites W3109359118 @default.
- W4292403669 cites W3114716529 @default.
- W4292403669 cites W3140190248 @default.
- W4292403669 cites W3142369091 @default.
- W4292403669 cites W3155820868 @default.
- W4292403669 cites W3162920695 @default.
- W4292403669 cites W3195143696 @default.
- W4292403669 cites W3210827332 @default.
- W4292403669 cites W4200178147 @default.
- W4292403669 cites W4200257536 @default.
- W4292403669 cites W4245306152 @default.
- W4292403669 cites W2768268637 @default.
- W4292403669 doi "https://doi.org/10.1016/j.padiff.2022.100440" @default.
- W4292403669 hasPublicationYear "2022" @default.
- W4292403669 type Work @default.
- W4292403669 citedByCount "0" @default.
- W4292403669 crossrefType "journal-article" @default.
- W4292403669 hasAuthorship W4292403669A5033437569 @default.
- W4292403669 hasAuthorship W4292403669A5072317368 @default.
- W4292403669 hasAuthorship W4292403669A5075682042 @default.
- W4292403669 hasBestOaLocation W42924036691 @default.
- W4292403669 hasConcept C103824480 @default.
- W4292403669 hasConcept C11413529 @default.
- W4292403669 hasConcept C119857082 @default.
- W4292403669 hasConcept C121332964 @default.
- W4292403669 hasConcept C134306372 @default.
- W4292403669 hasConcept C135628077 @default.
- W4292403669 hasConcept C158622935 @default.
- W4292403669 hasConcept C198880260 @default.
- W4292403669 hasConcept C23463724 @default.
- W4292403669 hasConcept C28826006 @default.
- W4292403669 hasConcept C31972630 @default.
- W4292403669 hasConcept C33923547 @default.
- W4292403669 hasConcept C36503486 @default.
- W4292403669 hasConcept C41008148 @default.
- W4292403669 hasConcept C62520636 @default.
- W4292403669 hasConcept C73000952 @default.
- W4292403669 hasConcept C80023036 @default.
- W4292403669 hasConcept C93779851 @default.
- W4292403669 hasConcept C97355855 @default.
- W4292403669 hasConceptScore W4292403669C103824480 @default.
- W4292403669 hasConceptScore W4292403669C11413529 @default.
- W4292403669 hasConceptScore W4292403669C119857082 @default.
- W4292403669 hasConceptScore W4292403669C121332964 @default.
- W4292403669 hasConceptScore W4292403669C134306372 @default.
- W4292403669 hasConceptScore W4292403669C135628077 @default.
- W4292403669 hasConceptScore W4292403669C158622935 @default.
- W4292403669 hasConceptScore W4292403669C198880260 @default.
- W4292403669 hasConceptScore W4292403669C23463724 @default.
- W4292403669 hasConceptScore W4292403669C28826006 @default.
- W4292403669 hasConceptScore W4292403669C31972630 @default.
- W4292403669 hasConceptScore W4292403669C33923547 @default.
- W4292403669 hasConceptScore W4292403669C36503486 @default.
- W4292403669 hasConceptScore W4292403669C41008148 @default.
- W4292403669 hasConceptScore W4292403669C62520636 @default.
- W4292403669 hasConceptScore W4292403669C73000952 @default.
- W4292403669 hasConceptScore W4292403669C80023036 @default.
- W4292403669 hasConceptScore W4292403669C93779851 @default.
- W4292403669 hasConceptScore W4292403669C97355855 @default.
- W4292403669 hasLocation W42924036691 @default.
- W4292403669 hasLocation W42924036692 @default.
- W4292403669 hasOpenAccess W4292403669 @default.