Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292425648> ?p ?o ?g. }
- W4292425648 endingPage "3127" @default.
- W4292425648 startingPage "3120" @default.
- W4292425648 abstract "Abstract Context It is essential to improve the current predictive ability for type 2 diabetes (T2D) risk. Objective We aimed to identify novel metabolic markers for future T2D in Chinese individuals of Han ethnicity and to determine whether the combined effect of metabolic and genetic markers improves the accuracy of prediction models containing clinical factors. Methods A nested case-control study containing 220 incident T2D patients and 220 age- and sex- matched controls from normoglycemic Chinese individuals of Han ethnicity was conducted within the Wuxi Non-Communicable Disease cohort with a 12-year follow-up. Metabolic profiling detection was performed by high-performance liquid chromatography‒mass spectrometry (HPLC-MS) by an untargeted strategy and 20 single nucleotide polymorphisms (SNPs) associated with T2D were genotyped using the Iplex Sequenom MassARRAY platform. Machine learning methods were used to identify metabolites associated with future T2D risk. Results We found that abnormal levels of 5 metabolites were associated with increased risk of future T2D: riboflavin, cnidioside A, 2-methoxy-5-(1H-1, 2, 4-triazol-5-yl)- 4-(trifluoromethyl) pyridine, 7-methylxanthine, and mestranol. The genetic risk score (GRS) based on 20 SNPs was significantly associated with T2D risk (OR = 1.35; 95% CI, 1.08-1.70 per SD). The area under the receiver operating characteristic curve (AUC) was greater for the model containing metabolites, GRS, and clinical traits than for the model containing clinical traits only (0.960 vs 0.798, P = 7.91 × 10-16). Conclusion In individuals with normal fasting glucose levels, abnormal levels of 5 metabolites were associated with future T2D. The combination of newly discovered metabolic markers and genetic markers could improve the prediction of incident T2D." @default.
- W4292425648 created "2022-08-20" @default.
- W4292425648 creator A5002727480 @default.
- W4292425648 creator A5010791112 @default.
- W4292425648 creator A5021430693 @default.
- W4292425648 creator A5029484872 @default.
- W4292425648 creator A5032100785 @default.
- W4292425648 creator A5036232621 @default.
- W4292425648 creator A5039516755 @default.
- W4292425648 creator A5043200557 @default.
- W4292425648 creator A5048050043 @default.
- W4292425648 creator A5057117256 @default.
- W4292425648 creator A5078813359 @default.
- W4292425648 creator A5087013080 @default.
- W4292425648 date "2022-08-17" @default.
- W4292425648 modified "2023-10-15" @default.
- W4292425648 title "Metabolic and Genetic Markers Improve Prediction of Incident Type 2 Diabetes: A Nested Case-Control Study in Chinese" @default.
- W4292425648 cites W1127994501 @default.
- W4292425648 cites W1505594724 @default.
- W4292425648 cites W1557887822 @default.
- W4292425648 cites W1841828633 @default.
- W4292425648 cites W1917985521 @default.
- W4292425648 cites W1966254895 @default.
- W4292425648 cites W1984407806 @default.
- W4292425648 cites W1988486444 @default.
- W4292425648 cites W1990623508 @default.
- W4292425648 cites W1993119975 @default.
- W4292425648 cites W1995895067 @default.
- W4292425648 cites W2004336671 @default.
- W4292425648 cites W2006617902 @default.
- W4292425648 cites W2011458417 @default.
- W4292425648 cites W2017214037 @default.
- W4292425648 cites W2017771330 @default.
- W4292425648 cites W2060458072 @default.
- W4292425648 cites W2063028213 @default.
- W4292425648 cites W2101359494 @default.
- W4292425648 cites W2114041992 @default.
- W4292425648 cites W2118413672 @default.
- W4292425648 cites W2158822657 @default.
- W4292425648 cites W2158958532 @default.
- W4292425648 cites W2161261572 @default.
- W4292425648 cites W2161287598 @default.
- W4292425648 cites W2165796078 @default.
- W4292425648 cites W2169120478 @default.
- W4292425648 cites W2169156123 @default.
- W4292425648 cites W2292231311 @default.
- W4292425648 cites W2412958814 @default.
- W4292425648 cites W2476039382 @default.
- W4292425648 cites W2525978403 @default.
- W4292425648 cites W2607059365 @default.
- W4292425648 cites W2746907831 @default.
- W4292425648 cites W2753886400 @default.
- W4292425648 cites W2792142032 @default.
- W4292425648 cites W2809388915 @default.
- W4292425648 cites W2955053048 @default.
- W4292425648 cites W2999266446 @default.
- W4292425648 cites W3004885731 @default.
- W4292425648 cites W3008618299 @default.
- W4292425648 cites W3012481772 @default.
- W4292425648 cites W3020528808 @default.
- W4292425648 cites W3108251697 @default.
- W4292425648 cites W3113237873 @default.
- W4292425648 cites W3114171261 @default.
- W4292425648 cites W3130360382 @default.
- W4292425648 cites W3137532457 @default.
- W4292425648 cites W40774661 @default.
- W4292425648 cites W4220778644 @default.
- W4292425648 cites W4292425648 @default.
- W4292425648 doi "https://doi.org/10.1210/clinem/dgac487" @default.
- W4292425648 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35977051" @default.
- W4292425648 hasPublicationYear "2022" @default.
- W4292425648 type Work @default.
- W4292425648 citedByCount "2" @default.
- W4292425648 countsByYear W42924256482022 @default.
- W4292425648 countsByYear W42924256482023 @default.
- W4292425648 crossrefType "journal-article" @default.
- W4292425648 hasAuthorship W4292425648A5002727480 @default.
- W4292425648 hasAuthorship W4292425648A5010791112 @default.
- W4292425648 hasAuthorship W4292425648A5021430693 @default.
- W4292425648 hasAuthorship W4292425648A5029484872 @default.
- W4292425648 hasAuthorship W4292425648A5032100785 @default.
- W4292425648 hasAuthorship W4292425648A5036232621 @default.
- W4292425648 hasAuthorship W4292425648A5039516755 @default.
- W4292425648 hasAuthorship W4292425648A5043200557 @default.
- W4292425648 hasAuthorship W4292425648A5048050043 @default.
- W4292425648 hasAuthorship W4292425648A5057117256 @default.
- W4292425648 hasAuthorship W4292425648A5078813359 @default.
- W4292425648 hasAuthorship W4292425648A5087013080 @default.
- W4292425648 hasBestOaLocation W42924256481 @default.
- W4292425648 hasConcept C104317684 @default.
- W4292425648 hasConcept C126322002 @default.
- W4292425648 hasConcept C134018914 @default.
- W4292425648 hasConcept C135763542 @default.
- W4292425648 hasConcept C143998085 @default.
- W4292425648 hasConcept C146304588 @default.
- W4292425648 hasConcept C151730666 @default.
- W4292425648 hasConcept C153209595 @default.
- W4292425648 hasConcept C165617652 @default.