Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292435612> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4292435612 abstract "Musculoskeletal and neurological disorders are the most common causes of walking problems among older people, and they often lead to diminished quality of life. Analyzing walking motion data manually requires trained professionals and the evaluations may not always be objective. To facilitate early diagnosis, recent deep learning-based methods have shown promising results for automated analysis, which can discover patterns that have not been found in traditional machine learning methods. We observe that existing work mostly applies deep learning on individual joint features such as the time series of joint positions. Due to the challenge of discovering inter-joint features such as the distance between feet (i.e. the stride width) from generally smaller-scale medical datasets, these methods usually perform sub-optimally. As a result, we propose a solution that explicitly takes both individual joint features and inter-joint features as input, relieving the system from the need of discovering more complicated features from small data. Due to the distinctive nature of the two types of features, we introduce a two-stream framework, with one stream learning from the time series of joint position and the other from the time series of relative joint displacement. We further develop a mid-layer fusion module to combine the discovered patterns in these two streams for diagnosis, which results in a complementary representation of the data for better prediction performance. We validate our system with a benchmark dataset of 3D skeleton motion that involves 45 patients with musculoskeletal and neurological disorders, and achieve a prediction accuracy of 95.56%, outperforming state-of-the-art methods." @default.
- W4292435612 created "2022-08-20" @default.
- W4292435612 creator A5001617092 @default.
- W4292435612 creator A5027268630 @default.
- W4292435612 creator A5035047195 @default.
- W4292435612 creator A5038258635 @default.
- W4292435612 creator A5080180158 @default.
- W4292435612 date "2022-08-18" @default.
- W4292435612 modified "2023-09-24" @default.
- W4292435612 title "A Two-stream Convolutional Network for Musculoskeletal and Neurological Disorders Prediction" @default.
- W4292435612 doi "https://doi.org/10.48550/arxiv.2208.08848" @default.
- W4292435612 hasPublicationYear "2022" @default.
- W4292435612 type Work @default.
- W4292435612 citedByCount "0" @default.
- W4292435612 crossrefType "posted-content" @default.
- W4292435612 hasAuthorship W4292435612A5001617092 @default.
- W4292435612 hasAuthorship W4292435612A5027268630 @default.
- W4292435612 hasAuthorship W4292435612A5035047195 @default.
- W4292435612 hasAuthorship W4292435612A5038258635 @default.
- W4292435612 hasAuthorship W4292435612A5080180158 @default.
- W4292435612 hasBestOaLocation W42924356121 @default.
- W4292435612 hasConcept C104114177 @default.
- W4292435612 hasConcept C108583219 @default.
- W4292435612 hasConcept C119857082 @default.
- W4292435612 hasConcept C121332964 @default.
- W4292435612 hasConcept C124101348 @default.
- W4292435612 hasConcept C127413603 @default.
- W4292435612 hasConcept C13280743 @default.
- W4292435612 hasConcept C153180895 @default.
- W4292435612 hasConcept C154945302 @default.
- W4292435612 hasConcept C170154142 @default.
- W4292435612 hasConcept C18007350 @default.
- W4292435612 hasConcept C18555067 @default.
- W4292435612 hasConcept C185798385 @default.
- W4292435612 hasConcept C205649164 @default.
- W4292435612 hasConcept C2778755073 @default.
- W4292435612 hasConcept C38652104 @default.
- W4292435612 hasConcept C41008148 @default.
- W4292435612 hasConcept C62520636 @default.
- W4292435612 hasConcept C81363708 @default.
- W4292435612 hasConceptScore W4292435612C104114177 @default.
- W4292435612 hasConceptScore W4292435612C108583219 @default.
- W4292435612 hasConceptScore W4292435612C119857082 @default.
- W4292435612 hasConceptScore W4292435612C121332964 @default.
- W4292435612 hasConceptScore W4292435612C124101348 @default.
- W4292435612 hasConceptScore W4292435612C127413603 @default.
- W4292435612 hasConceptScore W4292435612C13280743 @default.
- W4292435612 hasConceptScore W4292435612C153180895 @default.
- W4292435612 hasConceptScore W4292435612C154945302 @default.
- W4292435612 hasConceptScore W4292435612C170154142 @default.
- W4292435612 hasConceptScore W4292435612C18007350 @default.
- W4292435612 hasConceptScore W4292435612C18555067 @default.
- W4292435612 hasConceptScore W4292435612C185798385 @default.
- W4292435612 hasConceptScore W4292435612C205649164 @default.
- W4292435612 hasConceptScore W4292435612C2778755073 @default.
- W4292435612 hasConceptScore W4292435612C38652104 @default.
- W4292435612 hasConceptScore W4292435612C41008148 @default.
- W4292435612 hasConceptScore W4292435612C62520636 @default.
- W4292435612 hasConceptScore W4292435612C81363708 @default.
- W4292435612 hasLocation W42924356121 @default.
- W4292435612 hasOpenAccess W4292435612 @default.
- W4292435612 hasPrimaryLocation W42924356121 @default.
- W4292435612 hasRelatedWork W1895390915 @default.
- W4292435612 hasRelatedWork W2337926734 @default.
- W4292435612 hasRelatedWork W2621864722 @default.
- W4292435612 hasRelatedWork W2732542196 @default.
- W4292435612 hasRelatedWork W2738221750 @default.
- W4292435612 hasRelatedWork W2949389737 @default.
- W4292435612 hasRelatedWork W4281780675 @default.
- W4292435612 hasRelatedWork W4285586943 @default.
- W4292435612 hasRelatedWork W4287776258 @default.
- W4292435612 hasRelatedWork W564581980 @default.
- W4292435612 isParatext "false" @default.
- W4292435612 isRetracted "false" @default.
- W4292435612 workType "article" @default.