Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292451563> ?p ?o ?g. }
- W4292451563 endingPage "3762" @default.
- W4292451563 startingPage "3762" @default.
- W4292451563 abstract "The weighted mean temperature (Tm) is crucial for converting zenith wet delay to precipitable water vapor in global navigation satellite system meteorology. Mainstream Tm models have the shortcomings of poor universality and severe local accuracy loss, and they cannot reflect the nonlinear relationship between Tm and meteorological/spatiotemporal factors. Artificial neural network methods can effectively solve these problems. This study combines the advantages of the models that need in situ meteorological parameters and the empirical models to propose Tm hybrid models based on artificial neural network methods. The verification results showed that, compared with the Bevis, GPT3, and HGPT models, the root mean square errors (RMSEs) of the new three hybrid models were reduced by 35.3%/32.0%/31.6%, 40.8%/37.8%/37.4%, and 39.5%/36.4%/36.0%, respectively. The consistency of the new three hybrid models was more stable than the Bevis, GPT3, and HGPT models in terms of space and time. In addition, the three models occupy 99.6% less computer storage space than the GPT3 model, and the number of parameters was reduced by 99.2%. To better evaluate the improvement of hybrid models Tm in the precipitable water vapor (PWV) retrieval, the PWVs calculated using the radiosonde Tm and zenith wet delay (ZWD) were used as the reference. The RMSE of PWV derived from the best hybrid model’s Tm and the radiosonde ZWD meets the demand for meteorological research and is improved by 33.9%, 36.4%, and 37.0% compared with that of Bevis, GPT3, and HGPT models, respectively. The hypothesis testing results further verified that these improvements are significant. Therefore, these new models can be used for high-precision Tm estimation in China, especially in Global Navigation Satellite System (GNSS) receivers without ample storage space." @default.
- W4292451563 created "2022-08-20" @default.
- W4292451563 creator A5035274347 @default.
- W4292451563 creator A5043074821 @default.
- W4292451563 creator A5059723326 @default.
- W4292451563 creator A5063596859 @default.
- W4292451563 creator A5071145197 @default.
- W4292451563 creator A5082218886 @default.
- W4292451563 creator A5089053669 @default.
- W4292451563 date "2022-08-05" @default.
- W4292451563 modified "2023-10-01" @default.
- W4292451563 title "Weighted Mean Temperature Hybrid Models in China Based on Artificial Neural Network Methods" @default.
- W4292451563 cites W1498436455 @default.
- W4292451563 cites W1589916976 @default.
- W4292451563 cites W1968427495 @default.
- W4292451563 cites W1968947583 @default.
- W4292451563 cites W1977177161 @default.
- W4292451563 cites W2001402809 @default.
- W4292451563 cites W2001767484 @default.
- W4292451563 cites W2008251231 @default.
- W4292451563 cites W2028556796 @default.
- W4292451563 cites W2048363304 @default.
- W4292451563 cites W2052637687 @default.
- W4292451563 cites W2070429306 @default.
- W4292451563 cites W2081182187 @default.
- W4292451563 cites W2112306707 @default.
- W4292451563 cites W2126407467 @default.
- W4292451563 cites W2137983211 @default.
- W4292451563 cites W2149723649 @default.
- W4292451563 cites W2151536681 @default.
- W4292451563 cites W2151947457 @default.
- W4292451563 cites W2158143121 @default.
- W4292451563 cites W2158612390 @default.
- W4292451563 cites W2284447156 @default.
- W4292451563 cites W2605301990 @default.
- W4292451563 cites W2743536755 @default.
- W4292451563 cites W2755346628 @default.
- W4292451563 cites W2760461492 @default.
- W4292451563 cites W2793339937 @default.
- W4292451563 cites W2793913504 @default.
- W4292451563 cites W2899306094 @default.
- W4292451563 cites W2911964244 @default.
- W4292451563 cites W2914924738 @default.
- W4292451563 cites W2921004868 @default.
- W4292451563 cites W2980158082 @default.
- W4292451563 cites W2981551760 @default.
- W4292451563 cites W2988079113 @default.
- W4292451563 cites W2997822790 @default.
- W4292451563 cites W3005417347 @default.
- W4292451563 cites W3014107409 @default.
- W4292451563 cites W3033309374 @default.
- W4292451563 cites W3125574718 @default.
- W4292451563 cites W3131799872 @default.
- W4292451563 cites W3133675722 @default.
- W4292451563 cites W3171558647 @default.
- W4292451563 cites W4220937208 @default.
- W4292451563 cites W4223467213 @default.
- W4292451563 doi "https://doi.org/10.3390/rs14153762" @default.
- W4292451563 hasPublicationYear "2022" @default.
- W4292451563 type Work @default.
- W4292451563 citedByCount "2" @default.
- W4292451563 countsByYear W42924515632023 @default.
- W4292451563 crossrefType "journal-article" @default.
- W4292451563 hasAuthorship W4292451563A5035274347 @default.
- W4292451563 hasAuthorship W4292451563A5043074821 @default.
- W4292451563 hasAuthorship W4292451563A5059723326 @default.
- W4292451563 hasAuthorship W4292451563A5063596859 @default.
- W4292451563 hasAuthorship W4292451563A5071145197 @default.
- W4292451563 hasAuthorship W4292451563A5082218886 @default.
- W4292451563 hasAuthorship W4292451563A5089053669 @default.
- W4292451563 hasBestOaLocation W42924515631 @default.
- W4292451563 hasConcept C105795698 @default.
- W4292451563 hasConcept C119857082 @default.
- W4292451563 hasConcept C11999413 @default.
- W4292451563 hasConcept C139945424 @default.
- W4292451563 hasConcept C147534773 @default.
- W4292451563 hasConcept C153294291 @default.
- W4292451563 hasConcept C156008332 @default.
- W4292451563 hasConcept C205649164 @default.
- W4292451563 hasConcept C33923547 @default.
- W4292451563 hasConcept C39432304 @default.
- W4292451563 hasConcept C41008148 @default.
- W4292451563 hasConcept C50644808 @default.
- W4292451563 hasConcept C53970728 @default.
- W4292451563 hasConcept C62649853 @default.
- W4292451563 hasConceptScore W4292451563C105795698 @default.
- W4292451563 hasConceptScore W4292451563C119857082 @default.
- W4292451563 hasConceptScore W4292451563C11999413 @default.
- W4292451563 hasConceptScore W4292451563C139945424 @default.
- W4292451563 hasConceptScore W4292451563C147534773 @default.
- W4292451563 hasConceptScore W4292451563C153294291 @default.
- W4292451563 hasConceptScore W4292451563C156008332 @default.
- W4292451563 hasConceptScore W4292451563C205649164 @default.
- W4292451563 hasConceptScore W4292451563C33923547 @default.
- W4292451563 hasConceptScore W4292451563C39432304 @default.
- W4292451563 hasConceptScore W4292451563C41008148 @default.
- W4292451563 hasConceptScore W4292451563C50644808 @default.
- W4292451563 hasConceptScore W4292451563C53970728 @default.