Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292452320> ?p ?o ?g. }
- W4292452320 abstract "Over the last decade, an increase in research on medical decision support systems has been observed. However, compared to other disciplines, decision support systems in mental health are still in the minority, especially for rare diseases like post-traumatic stress disorder (PTSD). We aim to provide a comprehensive analysis of state-of-the-art digital decision support systems (DDSSs) for PTSD.Based on our systematic literature review of DDSSs for PTSD, we created an analytical framework using thematic analysis for feature extraction and quantitative analysis for the literature. Based on this framework, we extracted information around the medical domain of DDSSs, the data used, the technology used for data collection, user interaction, decision-making, user groups, validation, decision type and maturity level. Extracting data for all of these framework dimensions ensures consistency in our analysis and gives a holistic overview of DDSSs.Research on DDSSs for PTSD is rare and primarily deals with the algorithmic part of DDSSs (n = 17). Only one DDSS was found to be a usable product. From a data perspective, mostly checklists or questionnaires were used (n = 9). While the median sample size of 151 was rather low, the average accuracy was 82%. Validation, excluding algorithmic accuracy (like user acceptance), was mostly neglected, as was an analysis concerning possible user groups.Based on a systematic literature review, we developed a framework covering all parts (medical domain, data used, technology used for data collection, user interaction, decision-making, user groups, validation, decision type and maturity level) of DDSSs. Our framework was then used to analyze DDSSs for post-traumatic stress disorder. We found that DDSSs are not ready-to-use products but are mostly algorithms based on secondary datasets. This shows that there is still a gap between technical possibilities and real-world clinical work." @default.
- W4292452320 created "2022-08-20" @default.
- W4292452320 creator A5029326529 @default.
- W4292452320 creator A5040164399 @default.
- W4292452320 creator A5086585806 @default.
- W4292452320 date "2022-08-09" @default.
- W4292452320 modified "2023-10-05" @default.
- W4292452320 title "A systematic literature review of AI-based digital decision support systems for post-traumatic stress disorder" @default.
- W4292452320 cites W1445749116 @default.
- W4292452320 cites W1537829113 @default.
- W4292452320 cites W1569321962 @default.
- W4292452320 cites W1592211879 @default.
- W4292452320 cites W1624590394 @default.
- W4292452320 cites W1954751780 @default.
- W4292452320 cites W1977800863 @default.
- W4292452320 cites W1979290264 @default.
- W4292452320 cites W1985760163 @default.
- W4292452320 cites W1988009150 @default.
- W4292452320 cites W1990652932 @default.
- W4292452320 cites W2035791023 @default.
- W4292452320 cites W2040067330 @default.
- W4292452320 cites W2041674474 @default.
- W4292452320 cites W2053207973 @default.
- W4292452320 cites W2067937248 @default.
- W4292452320 cites W2081956352 @default.
- W4292452320 cites W2083218617 @default.
- W4292452320 cites W2090944098 @default.
- W4292452320 cites W2097491980 @default.
- W4292452320 cites W2100478228 @default.
- W4292452320 cites W2101568283 @default.
- W4292452320 cites W2113165968 @default.
- W4292452320 cites W2118136070 @default.
- W4292452320 cites W2120109270 @default.
- W4292452320 cites W2131802978 @default.
- W4292452320 cites W2135724074 @default.
- W4292452320 cites W2138053670 @default.
- W4292452320 cites W2141302784 @default.
- W4292452320 cites W2149569290 @default.
- W4292452320 cites W2155653793 @default.
- W4292452320 cites W2157394212 @default.
- W4292452320 cites W2240052893 @default.
- W4292452320 cites W2251335235 @default.
- W4292452320 cites W2270987589 @default.
- W4292452320 cites W2336520461 @default.
- W4292452320 cites W2513837850 @default.
- W4292452320 cites W2528590917 @default.
- W4292452320 cites W2539284712 @default.
- W4292452320 cites W2551960531 @default.
- W4292452320 cites W2610332124 @default.
- W4292452320 cites W2618095415 @default.
- W4292452320 cites W2620588798 @default.
- W4292452320 cites W26406251 @default.
- W4292452320 cites W2655824372 @default.
- W4292452320 cites W2763907302 @default.
- W4292452320 cites W2767066031 @default.
- W4292452320 cites W2895271672 @default.
- W4292452320 cites W2896445937 @default.
- W4292452320 cites W2940562610 @default.
- W4292452320 cites W2955266126 @default.
- W4292452320 cites W2962439506 @default.
- W4292452320 cites W2966977115 @default.
- W4292452320 cites W2978504473 @default.
- W4292452320 cites W3022733764 @default.
- W4292452320 cites W4247665917 @default.
- W4292452320 doi "https://doi.org/10.3389/fpsyt.2022.923613" @default.
- W4292452320 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36016975" @default.
- W4292452320 hasPublicationYear "2022" @default.
- W4292452320 type Work @default.
- W4292452320 citedByCount "4" @default.
- W4292452320 countsByYear W42924523202022 @default.
- W4292452320 countsByYear W42924523202023 @default.
- W4292452320 crossrefType "journal-article" @default.
- W4292452320 hasAuthorship W4292452320A5029326529 @default.
- W4292452320 hasAuthorship W4292452320A5040164399 @default.
- W4292452320 hasAuthorship W4292452320A5086585806 @default.
- W4292452320 hasBestOaLocation W42924523201 @default.
- W4292452320 hasConcept C105795698 @default.
- W4292452320 hasConcept C107327155 @default.
- W4292452320 hasConcept C124101348 @default.
- W4292452320 hasConcept C133462117 @default.
- W4292452320 hasConcept C136764020 @default.
- W4292452320 hasConcept C144024400 @default.
- W4292452320 hasConcept C17744445 @default.
- W4292452320 hasConcept C189708586 @default.
- W4292452320 hasConcept C190248442 @default.
- W4292452320 hasConcept C199539241 @default.
- W4292452320 hasConcept C2522767166 @default.
- W4292452320 hasConcept C2779473830 @default.
- W4292452320 hasConcept C2780615836 @default.
- W4292452320 hasConcept C33923547 @default.
- W4292452320 hasConcept C36289849 @default.
- W4292452320 hasConcept C41008148 @default.
- W4292452320 hasConcept C74196892 @default.
- W4292452320 hasConceptScore W4292452320C105795698 @default.
- W4292452320 hasConceptScore W4292452320C107327155 @default.
- W4292452320 hasConceptScore W4292452320C124101348 @default.
- W4292452320 hasConceptScore W4292452320C133462117 @default.
- W4292452320 hasConceptScore W4292452320C136764020 @default.
- W4292452320 hasConceptScore W4292452320C144024400 @default.
- W4292452320 hasConceptScore W4292452320C17744445 @default.