Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292467039> ?p ?o ?g. }
- W4292467039 endingPage "12" @default.
- W4292467039 startingPage "1" @default.
- W4292467039 abstract "Coronavirus disease (COVID-19) has created an unprecedented devastation and the loss of millions of lives globally. Contagious nature and fatalities invariably pose challenges to physicians and healthcare support systems. Clinical diagnostic evaluation using reverse transcription-polymerase chain reaction and other approaches are currently in use. The Chest X-ray (CXR) and CT images were effectively utilized in screening purposes that could provide relevant data on localized regions affected by the infection. A step towards automated screening and diagnosis using CXR and CT could be of considerable importance in these turbulent times. The main objective is to probe a simple threshold-based segmentation approach to identify possible infection regions in CXR images and investigate intensity-based, wavelet transform (WT)-based, and Laws based texture features with statistical measures. Further feature selection strategy using Random Forest (RF) then selected features used to create Machine Learning (ML) representation with Support Vector Machine (SVM) and a Random Forest (RF) to make different COVID-19 from viral pneumonia (VP). The results obtained clearly indicate that the intensity and WT-based features vary in the two pathologies that are better differentiated with the combined features trained using SVM and RF classifiers. Classifier performance measures like an Area Under the Curve (AUC) of 0.97 and by and large classification accuracy of 0.9 using the RF model clearly indicate that the methodology implemented is useful in characterizing COVID-19 and Viral Pneumonia." @default.
- W4292467039 created "2022-08-21" @default.
- W4292467039 creator A5015201875 @default.
- W4292467039 creator A5015625920 @default.
- W4292467039 creator A5045093520 @default.
- W4292467039 creator A5053315060 @default.
- W4292467039 creator A5057217204 @default.
- W4292467039 creator A5089000017 @default.
- W4292467039 date "2022-08-20" @default.
- W4292467039 modified "2023-09-26" @default.
- W4292467039 title "Multithreshold Segmentation and Machine Learning Based Approach to Differentiate COVID-19 from Viral Pneumonia" @default.
- W4292467039 cites W1618587350 @default.
- W4292467039 cites W1966593253 @default.
- W4292467039 cites W2065634121 @default.
- W4292467039 cites W2067130642 @default.
- W4292467039 cites W2091290950 @default.
- W4292467039 cites W2133059825 @default.
- W4292467039 cites W2155632266 @default.
- W4292467039 cites W2167003500 @default.
- W4292467039 cites W2170505850 @default.
- W4292467039 cites W2345205852 @default.
- W4292467039 cites W2518995139 @default.
- W4292467039 cites W2560492887 @default.
- W4292467039 cites W2596144082 @default.
- W4292467039 cites W2768052468 @default.
- W4292467039 cites W2781801258 @default.
- W4292467039 cites W2790120523 @default.
- W4292467039 cites W2791187255 @default.
- W4292467039 cites W2793904502 @default.
- W4292467039 cites W2888397986 @default.
- W4292467039 cites W2898100585 @default.
- W4292467039 cites W2914550345 @default.
- W4292467039 cites W2948666538 @default.
- W4292467039 cites W2990041205 @default.
- W4292467039 cites W2997238222 @default.
- W4292467039 cites W3005147719 @default.
- W4292467039 cites W3005363104 @default.
- W4292467039 cites W3007927949 @default.
- W4292467039 cites W3011249019 @default.
- W4292467039 cites W3012320055 @default.
- W4292467039 cites W3013277995 @default.
- W4292467039 cites W3014206051 @default.
- W4292467039 cites W3018026610 @default.
- W4292467039 cites W3023402713 @default.
- W4292467039 cites W3024801014 @default.
- W4292467039 cites W3033616466 @default.
- W4292467039 cites W3082326062 @default.
- W4292467039 cites W3087636224 @default.
- W4292467039 cites W3091787675 @default.
- W4292467039 cites W3095670364 @default.
- W4292467039 cites W3095681026 @default.
- W4292467039 cites W3103947479 @default.
- W4292467039 cites W3106539405 @default.
- W4292467039 cites W3108203735 @default.
- W4292467039 cites W3118649749 @default.
- W4292467039 cites W3120327591 @default.
- W4292467039 cites W3121623260 @default.
- W4292467039 cites W3130172878 @default.
- W4292467039 cites W3135057764 @default.
- W4292467039 cites W3144848010 @default.
- W4292467039 cites W3147450857 @default.
- W4292467039 cites W3156011032 @default.
- W4292467039 cites W3197337676 @default.
- W4292467039 cites W3204079886 @default.
- W4292467039 cites W3213040328 @default.
- W4292467039 cites W3215732401 @default.
- W4292467039 cites W3216366741 @default.
- W4292467039 cites W4224014209 @default.
- W4292467039 cites W4281754523 @default.
- W4292467039 doi "https://doi.org/10.1155/2022/2728866" @default.
- W4292467039 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36039344" @default.
- W4292467039 hasPublicationYear "2022" @default.
- W4292467039 type Work @default.
- W4292467039 citedByCount "1" @default.
- W4292467039 countsByYear W42924670392023 @default.
- W4292467039 crossrefType "journal-article" @default.
- W4292467039 hasAuthorship W4292467039A5015201875 @default.
- W4292467039 hasAuthorship W4292467039A5015625920 @default.
- W4292467039 hasAuthorship W4292467039A5045093520 @default.
- W4292467039 hasAuthorship W4292467039A5053315060 @default.
- W4292467039 hasAuthorship W4292467039A5057217204 @default.
- W4292467039 hasAuthorship W4292467039A5089000017 @default.
- W4292467039 hasBestOaLocation W42924670391 @default.
- W4292467039 hasConcept C119857082 @default.
- W4292467039 hasConcept C12267149 @default.
- W4292467039 hasConcept C124504099 @default.
- W4292467039 hasConcept C126322002 @default.
- W4292467039 hasConcept C142724271 @default.
- W4292467039 hasConcept C153180895 @default.
- W4292467039 hasConcept C154945302 @default.
- W4292467039 hasConcept C169258074 @default.
- W4292467039 hasConcept C2777914695 @default.
- W4292467039 hasConcept C2779134260 @default.
- W4292467039 hasConcept C3008058167 @default.
- W4292467039 hasConcept C41008148 @default.
- W4292467039 hasConcept C524204448 @default.
- W4292467039 hasConcept C71924100 @default.
- W4292467039 hasConcept C89600930 @default.