Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292492335> ?p ?o ?g. }
- W4292492335 endingPage "112520" @default.
- W4292492335 startingPage "112520" @default.
- W4292492335 abstract "Nowcasting and forecasting of epidemic spreading rely on incidence series of reported cases to derive the fundamental epidemiological parameters for a given pathogen. Two relevant drawbacks for predictions are the unknown fractions of undocumented cases and levels of nonpharmacological interventions, which span highly heterogeneously across different places and times. We describe a simple data-driven approach using a compartmental model including asymptomatic and presymptomatic contagions that allows to estimate both the level of undocumented infections and the value of effective reproductive number R t from time series of reported cases, deaths, and epidemiological parameters. The method was applied to epidemic series for COVID-19 across different municipalities in Brazil allowing to estimate the heterogeneity level of under-reporting across different places. The reproductive number derived within the current framework is little sensitive to both diagnosis and infection rates during the asymptomatic states. The methods described here can be extended to more general cases if data is available and adapted to other epidemiological approaches and surveillance data." @default.
- W4292492335 created "2022-08-21" @default.
- W4292492335 creator A5013949918 @default.
- W4292492335 creator A5032900093 @default.
- W4292492335 creator A5062067221 @default.
- W4292492335 date "2022-10-01" @default.
- W4292492335 modified "2023-10-18" @default.
- W4292492335 title "Data-driven approach in a compartmental epidemic model to assess undocumented infections" @default.
- W4292492335 cites W2097446414 @default.
- W4292492335 cites W2297152540 @default.
- W4292492335 cites W2755849266 @default.
- W4292492335 cites W3003573988 @default.
- W4292492335 cites W3003668884 @default.
- W4292492335 cites W3006834170 @default.
- W4292492335 cites W3009983851 @default.
- W4292492335 cites W3010233963 @default.
- W4292492335 cites W3010781325 @default.
- W4292492335 cites W3010839841 @default.
- W4292492335 cites W3012284084 @default.
- W4292492335 cites W3013215798 @default.
- W4292492335 cites W3013942622 @default.
- W4292492335 cites W3013967887 @default.
- W4292492335 cites W3014866318 @default.
- W4292492335 cites W3015571324 @default.
- W4292492335 cites W3015792206 @default.
- W4292492335 cites W3021923959 @default.
- W4292492335 cites W3023190093 @default.
- W4292492335 cites W3029291901 @default.
- W4292492335 cites W3032971139 @default.
- W4292492335 cites W3034304416 @default.
- W4292492335 cites W3035882304 @default.
- W4292492335 cites W3036272246 @default.
- W4292492335 cites W3044468596 @default.
- W4292492335 cites W3045248985 @default.
- W4292492335 cites W3045668724 @default.
- W4292492335 cites W3046033700 @default.
- W4292492335 cites W3047132168 @default.
- W4292492335 cites W3080956330 @default.
- W4292492335 cites W3087050596 @default.
- W4292492335 cites W3087248341 @default.
- W4292492335 cites W3093761756 @default.
- W4292492335 cites W3101238500 @default.
- W4292492335 cites W3101716397 @default.
- W4292492335 cites W3104468709 @default.
- W4292492335 cites W3109998099 @default.
- W4292492335 cites W3111883190 @default.
- W4292492335 cites W3112547455 @default.
- W4292492335 cites W3117021508 @default.
- W4292492335 cites W3120732682 @default.
- W4292492335 cites W3120867737 @default.
- W4292492335 cites W3121286195 @default.
- W4292492335 cites W3126874005 @default.
- W4292492335 cites W3128463352 @default.
- W4292492335 cites W3132630010 @default.
- W4292492335 cites W3134208712 @default.
- W4292492335 cites W3136624297 @default.
- W4292492335 cites W3155880700 @default.
- W4292492335 cites W3156626660 @default.
- W4292492335 cites W3157031346 @default.
- W4292492335 cites W3165423827 @default.
- W4292492335 cites W3168278554 @default.
- W4292492335 cites W3176336253 @default.
- W4292492335 cites W3185702296 @default.
- W4292492335 doi "https://doi.org/10.1016/j.chaos.2022.112520" @default.
- W4292492335 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35996714" @default.
- W4292492335 hasPublicationYear "2022" @default.
- W4292492335 type Work @default.
- W4292492335 citedByCount "0" @default.
- W4292492335 crossrefType "journal-article" @default.
- W4292492335 hasAuthorship W4292492335A5013949918 @default.
- W4292492335 hasAuthorship W4292492335A5032900093 @default.
- W4292492335 hasAuthorship W4292492335A5062067221 @default.
- W4292492335 hasBestOaLocation W42924923352 @default.
- W4292492335 hasConcept C105795698 @default.
- W4292492335 hasConcept C107130276 @default.
- W4292492335 hasConcept C142724271 @default.
- W4292492335 hasConcept C143724316 @default.
- W4292492335 hasConcept C149782125 @default.
- W4292492335 hasConcept C151730666 @default.
- W4292492335 hasConcept C153294291 @default.
- W4292492335 hasConcept C1627819 @default.
- W4292492335 hasConcept C204264503 @default.
- W4292492335 hasConcept C205649164 @default.
- W4292492335 hasConcept C2524010 @default.
- W4292492335 hasConcept C2777910003 @default.
- W4292492335 hasConcept C2779134260 @default.
- W4292492335 hasConcept C2781013037 @default.
- W4292492335 hasConcept C2908647359 @default.
- W4292492335 hasConcept C3007834351 @default.
- W4292492335 hasConcept C3008058167 @default.
- W4292492335 hasConcept C33923547 @default.
- W4292492335 hasConcept C41008148 @default.
- W4292492335 hasConcept C524204448 @default.
- W4292492335 hasConcept C61511704 @default.
- W4292492335 hasConcept C71924100 @default.
- W4292492335 hasConcept C86803240 @default.
- W4292492335 hasConcept C99454951 @default.
- W4292492335 hasConceptScore W4292492335C105795698 @default.