Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292493699> ?p ?o ?g. }
- W4292493699 abstract "Objectives Endometrial carcinoma (EC) is one of the three major gynecological malignancies, in which 15% - 20% patients will have recurrence and metastasis. Though there are many studies on the prognosis on this cancer, the performances of existing models evaluating the risk of its recurrence and metastasis are yet to be improved. In addition, a comprehensive multi-omics analyses on the prognostic signatures of EC are on demand. In this study, we aimed to construct a relatively stable and reliable model for predicting recurrence and metastasis of EC. This will help determine the risk level of patients and choose appropriate adjuvant therapy, thereby avoiding improper treatment, and improving the prognosis of patients. Methods The mRNA, microRNA (miRNA), long non-coding RNA (lncRNA), copy number variation (CNV) data and clinical information of patients with EC were downloaded from The Cancer Genome Atlas (TCGA). Differential expression analyses were performed between the recurrence or metastasis group and the non-recurrence/metastasis group. Then, we screened potential prognostic markers from the four kinds of omics data respectively and established prediction models using three classifiers. Results We achieved differential expressed mRNAs, lncRNAs, miRNAs and CNVs between the two groups. According to feature selection scores by the random forest algorithm, 275 CNV features, 50 lncRNA features, 150 miRNA features and 150 mRNA features were selected, respectively. And the prediction model constructed by the features of lncRNA data using random forest method showed the best performance, with an area under the curve of 0.763, and an accuracy of 0.819 under 10-fold cross-validation. Conclusion We developed a computational model using omics information, which is able to predicting recurrence and metastasis risk of EC accurately." @default.
- W4292493699 created "2022-08-21" @default.
- W4292493699 creator A5051636078 @default.
- W4292493699 creator A5072861069 @default.
- W4292493699 creator A5075529271 @default.
- W4292493699 creator A5082395081 @default.
- W4292493699 creator A5084020819 @default.
- W4292493699 creator A5088947252 @default.
- W4292493699 date "2022-08-19" @default.
- W4292493699 modified "2023-09-30" @default.
- W4292493699 title "Predicting recurrence and metastasis risk of endometrial carcinoma via prognostic signatures identified from multi-omics data" @default.
- W4292493699 cites W1831050183 @default.
- W4292493699 cites W1992922260 @default.
- W4292493699 cites W2035618305 @default.
- W4292493699 cites W2041440766 @default.
- W4292493699 cites W2070515723 @default.
- W4292493699 cites W2100532998 @default.
- W4292493699 cites W2103017472 @default.
- W4292493699 cites W2105349784 @default.
- W4292493699 cites W2160767504 @default.
- W4292493699 cites W2179438025 @default.
- W4292493699 cites W2322926448 @default.
- W4292493699 cites W2340943828 @default.
- W4292493699 cites W2558534037 @default.
- W4292493699 cites W2559544511 @default.
- W4292493699 cites W2585235953 @default.
- W4292493699 cites W2612722772 @default.
- W4292493699 cites W2766082421 @default.
- W4292493699 cites W2792533056 @default.
- W4292493699 cites W2885473049 @default.
- W4292493699 cites W2947000702 @default.
- W4292493699 cites W2948727384 @default.
- W4292493699 cites W2950325845 @default.
- W4292493699 cites W2950595506 @default.
- W4292493699 cites W2980082554 @default.
- W4292493699 cites W2994085756 @default.
- W4292493699 cites W2999417355 @default.
- W4292493699 cites W3007573310 @default.
- W4292493699 cites W3032843171 @default.
- W4292493699 cites W3035932143 @default.
- W4292493699 cites W3037347412 @default.
- W4292493699 cites W3041880399 @default.
- W4292493699 cites W3047743240 @default.
- W4292493699 cites W3080208127 @default.
- W4292493699 cites W3126444173 @default.
- W4292493699 cites W3127559895 @default.
- W4292493699 cites W3128646645 @default.
- W4292493699 cites W3144599579 @default.
- W4292493699 cites W3159209990 @default.
- W4292493699 cites W3174150373 @default.
- W4292493699 cites W3181005890 @default.
- W4292493699 cites W3181161067 @default.
- W4292493699 cites W3189368770 @default.
- W4292493699 cites W4200566810 @default.
- W4292493699 cites W4206220281 @default.
- W4292493699 cites W4206547282 @default.
- W4292493699 cites W4211047904 @default.
- W4292493699 doi "https://doi.org/10.3389/fonc.2022.982452" @default.
- W4292493699 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36059678" @default.
- W4292493699 hasPublicationYear "2022" @default.
- W4292493699 type Work @default.
- W4292493699 citedByCount "0" @default.
- W4292493699 crossrefType "journal-article" @default.
- W4292493699 hasAuthorship W4292493699A5051636078 @default.
- W4292493699 hasAuthorship W4292493699A5072861069 @default.
- W4292493699 hasAuthorship W4292493699A5075529271 @default.
- W4292493699 hasAuthorship W4292493699A5082395081 @default.
- W4292493699 hasAuthorship W4292493699A5084020819 @default.
- W4292493699 hasAuthorship W4292493699A5088947252 @default.
- W4292493699 hasBestOaLocation W42924936991 @default.
- W4292493699 hasConcept C104317684 @default.
- W4292493699 hasConcept C119857082 @default.
- W4292493699 hasConcept C120821319 @default.
- W4292493699 hasConcept C121608353 @default.
- W4292493699 hasConcept C126322002 @default.
- W4292493699 hasConcept C141231307 @default.
- W4292493699 hasConcept C143998085 @default.
- W4292493699 hasConcept C145059251 @default.
- W4292493699 hasConcept C157585117 @default.
- W4292493699 hasConcept C169258074 @default.
- W4292493699 hasConcept C2777088508 @default.
- W4292493699 hasConcept C2777546739 @default.
- W4292493699 hasConcept C2777982462 @default.
- W4292493699 hasConcept C2779013556 @default.
- W4292493699 hasConcept C41008148 @default.
- W4292493699 hasConcept C55493867 @default.
- W4292493699 hasConcept C60644358 @default.
- W4292493699 hasConcept C70721500 @default.
- W4292493699 hasConcept C71924100 @default.
- W4292493699 hasConcept C86803240 @default.
- W4292493699 hasConceptScore W4292493699C104317684 @default.
- W4292493699 hasConceptScore W4292493699C119857082 @default.
- W4292493699 hasConceptScore W4292493699C120821319 @default.
- W4292493699 hasConceptScore W4292493699C121608353 @default.
- W4292493699 hasConceptScore W4292493699C126322002 @default.
- W4292493699 hasConceptScore W4292493699C141231307 @default.
- W4292493699 hasConceptScore W4292493699C143998085 @default.
- W4292493699 hasConceptScore W4292493699C145059251 @default.
- W4292493699 hasConceptScore W4292493699C157585117 @default.
- W4292493699 hasConceptScore W4292493699C169258074 @default.