Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292551344> ?p ?o ?g. }
- W4292551344 endingPage "525" @default.
- W4292551344 startingPage "510" @default.
- W4292551344 abstract "Dengue is a harmful tropical disease that causes death to many people. Currently, the dengue vaccine development is still at an early stage, and only intervention methods exist after dengue cases increase. Thus, previously, two scientific experimental field studies were conducted in producing a dengue outbreak forecasting model as an early warning system. Successfully, an Autoregressive Distributed Lag (ADL) Model was developed using three factors: the epidemiological, entomological, and environmental with an accuracy of 85%; but a higher percentage is required in minimizing the error for the model to be useful. Hence, this study aimed to develop a practical and cost-effective dengue outbreak forecasting model with at least 90% accuracy to be embedded in an early warning computer system using the Internet of Things (IoT) approach. Eighty-one weeks of time series data of the three factors were used in six forecasting models, which were Autoregressive Distributed Lag (ADL), Hierarchical Forecasting (Bottom-up and Optimal combination) and three Machine Learning methods: (Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest). Five error measures were used to evaluate the consistency performance of the models in order to ensure model performance. The findings indicated Random Forest outperformed the other models with an accuracy of 95% when including all three factors. But practically, collecting mosquito related data (the entomological factor) was very costly and time consuming. Thus, it was removed from the model, and the accuracy dropped to 92% but still high enough to be of practical use, i.e., beyond 90%. However, the practical ground operationalization of the early warning system also requires several rain gauges to be located at the dengue hot spots due to localized rainfall. Hence, further analysis was conducted in determining the location of the rain gauges. This has led to the recommendation that the rain gauges should be located about 3-4 km apart at the dengue hot spots to ensure the accuracy of the rainfall data to be included in the dengue outbreak forecasting model so that it can be embedded in the early warning system. Therefore, this early warning system can save lives, and prevention is better than cure." @default.
- W4292551344 created "2022-08-22" @default.
- W4292551344 creator A5004051689 @default.
- W4292551344 creator A5007007918 @default.
- W4292551344 creator A5017307271 @default.
- W4292551344 creator A5022868153 @default.
- W4292551344 creator A5090896822 @default.
- W4292551344 date "2022-09-01" @default.
- W4292551344 modified "2023-09-30" @default.
- W4292551344 title "The practicality of Malaysia dengue outbreak forecasting model as an early warning system" @default.
- W4292551344 cites W12371306 @default.
- W4292551344 cites W1505528947 @default.
- W4292551344 cites W1542220849 @default.
- W4292551344 cites W1611319282 @default.
- W4292551344 cites W1986929064 @default.
- W4292551344 cites W1989999834 @default.
- W4292551344 cites W2038849095 @default.
- W4292551344 cites W2044263481 @default.
- W4292551344 cites W2048697945 @default.
- W4292551344 cites W2054838761 @default.
- W4292551344 cites W2056530754 @default.
- W4292551344 cites W2101351927 @default.
- W4292551344 cites W2133804211 @default.
- W4292551344 cites W2143523521 @default.
- W4292551344 cites W2155151404 @default.
- W4292551344 cites W2155294896 @default.
- W4292551344 cites W2159081448 @default.
- W4292551344 cites W2168878484 @default.
- W4292551344 cites W2184148565 @default.
- W4292551344 cites W2404812796 @default.
- W4292551344 cites W2407750030 @default.
- W4292551344 cites W2480622037 @default.
- W4292551344 cites W2492819333 @default.
- W4292551344 cites W2598379669 @default.
- W4292551344 cites W2616245791 @default.
- W4292551344 cites W2754870732 @default.
- W4292551344 cites W2766013390 @default.
- W4292551344 cites W2789410922 @default.
- W4292551344 cites W2792455392 @default.
- W4292551344 cites W2794778778 @default.
- W4292551344 cites W2801974413 @default.
- W4292551344 cites W2808945087 @default.
- W4292551344 cites W2890689990 @default.
- W4292551344 cites W2937677298 @default.
- W4292551344 cites W2955009184 @default.
- W4292551344 cites W2978602421 @default.
- W4292551344 cites W2983644772 @default.
- W4292551344 cites W2988205563 @default.
- W4292551344 cites W3003313580 @default.
- W4292551344 cites W3006928610 @default.
- W4292551344 cites W3007350646 @default.
- W4292551344 cites W3013330736 @default.
- W4292551344 cites W3088943773 @default.
- W4292551344 cites W3120244587 @default.
- W4292551344 cites W3130453397 @default.
- W4292551344 cites W3130769042 @default.
- W4292551344 cites W3131219549 @default.
- W4292551344 cites W3135866936 @default.
- W4292551344 cites W3135909270 @default.
- W4292551344 cites W3202120868 @default.
- W4292551344 cites W3216027625 @default.
- W4292551344 cites W4206189171 @default.
- W4292551344 cites W4224229607 @default.
- W4292551344 cites W4281663883 @default.
- W4292551344 doi "https://doi.org/10.1016/j.idm.2022.07.008" @default.
- W4292551344 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36091345" @default.
- W4292551344 hasPublicationYear "2022" @default.
- W4292551344 type Work @default.
- W4292551344 citedByCount "0" @default.
- W4292551344 crossrefType "journal-article" @default.
- W4292551344 hasAuthorship W4292551344A5004051689 @default.
- W4292551344 hasAuthorship W4292551344A5007007918 @default.
- W4292551344 hasAuthorship W4292551344A5017307271 @default.
- W4292551344 hasAuthorship W4292551344A5022868153 @default.
- W4292551344 hasAuthorship W4292551344A5090896822 @default.
- W4292551344 hasBestOaLocation W42925513442 @default.
- W4292551344 hasConcept C105795698 @default.
- W4292551344 hasConcept C119857082 @default.
- W4292551344 hasConcept C12267149 @default.
- W4292551344 hasConcept C124101348 @default.
- W4292551344 hasConcept C151406439 @default.
- W4292551344 hasConcept C154945302 @default.
- W4292551344 hasConcept C159009313 @default.
- W4292551344 hasConcept C159877910 @default.
- W4292551344 hasConcept C169258074 @default.
- W4292551344 hasConcept C203014093 @default.
- W4292551344 hasConcept C24338571 @default.
- W4292551344 hasConcept C2779296788 @default.
- W4292551344 hasConcept C29825287 @default.
- W4292551344 hasConcept C31258907 @default.
- W4292551344 hasConcept C33923547 @default.
- W4292551344 hasConcept C41008148 @default.
- W4292551344 hasConcept C50644808 @default.
- W4292551344 hasConcept C533803919 @default.
- W4292551344 hasConcept C71924100 @default.
- W4292551344 hasConcept C75778745 @default.
- W4292551344 hasConcept C76155785 @default.
- W4292551344 hasConceptScore W4292551344C105795698 @default.