Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292553573> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4292553573 endingPage "6252" @default.
- W4292553573 startingPage "6252" @default.
- W4292553573 abstract "Industry 4.0 lets the industry build compact, precise, and connected assets and also has made modern industrial assets a massive source of data that can be used in process optimization, defining product quality, and predictive maintenance (PM). Large amounts of data are collected from machines, processed, and analyzed by different machine learning (ML) algorithms to achieve effective PM. These machines, assumed as edge devices, transmit their data readings to the cloud for processing and modeling. Transmitting massive amounts of data between edge and cloud is costly, increases latency, and causes privacy concerns. To address this issue, efforts have been made to use edge computing in PM applications., reducing data transmission costs and increasing processing speed. Federated learning (FL) has been proposed a mechanism that provides the ability to create a model from distributed data in edge, fog, and cloud layers without violating privacy and offers new opportunities for a collaborative approach to PM applications. However, FL has challenges in confronting with asset management in the industry, especially in the PM applications, which need to be considered in order to be fully compatible with these applications. This study describes distributed ML for PM applications and proposes two federated algorithms: Federated support vector machine (FedSVM) with memory for anomaly detection and federated long-short term memory (FedLSTM) for remaining useful life (RUL) estimation that enables factories at the fog level to maximize their PM models’ accuracy without compromising their privacy. A global model at the cloud level has also been generated based on these algorithms. We have evaluated the approach using the Commercial Modular Aero-Propulsion System Simulation (CMAPSS) dataset to predict engines’ RUL Experimental results demonstrate the advantage of FedSVM and FedLSTM in terms of model accuracy, model convergence time, and network usage resources." @default.
- W4292553573 created "2022-08-22" @default.
- W4292553573 creator A5008360633 @default.
- W4292553573 creator A5027636891 @default.
- W4292553573 date "2022-08-19" @default.
- W4292553573 modified "2023-10-18" @default.
- W4292553573 title "Aggregation Strategy on Federated Machine Learning Algorithm for Collaborative Predictive Maintenance" @default.
- W4292553573 cites W2064675550 @default.
- W4292553573 cites W2471161958 @default.
- W4292553573 cites W2627005429 @default.
- W4292553573 cites W2772084711 @default.
- W4292553573 cites W2810084952 @default.
- W4292553573 cites W2892060055 @default.
- W4292553573 cites W2912213068 @default.
- W4292553573 cites W2962788286 @default.
- W4292553573 cites W2970551830 @default.
- W4292553573 cites W2975966063 @default.
- W4292553573 cites W2979258553 @default.
- W4292553573 cites W2980821238 @default.
- W4292553573 cites W3004277316 @default.
- W4292553573 cites W3006372726 @default.
- W4292553573 cites W3012125688 @default.
- W4292553573 cites W3015636663 @default.
- W4292553573 cites W3041971333 @default.
- W4292553573 cites W3046653923 @default.
- W4292553573 cites W3099185017 @default.
- W4292553573 cites W3105324058 @default.
- W4292553573 cites W3120799912 @default.
- W4292553573 cites W3123459983 @default.
- W4292553573 cites W3126390989 @default.
- W4292553573 cites W3129848661 @default.
- W4292553573 cites W3164193355 @default.
- W4292553573 cites W3173866016 @default.
- W4292553573 cites W3193988822 @default.
- W4292553573 cites W3196371845 @default.
- W4292553573 cites W3198121252 @default.
- W4292553573 cites W4239510810 @default.
- W4292553573 doi "https://doi.org/10.3390/s22166252" @default.
- W4292553573 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36016014" @default.
- W4292553573 hasPublicationYear "2022" @default.
- W4292553573 type Work @default.
- W4292553573 citedByCount "9" @default.
- W4292553573 countsByYear W42925535732022 @default.
- W4292553573 countsByYear W42925535732023 @default.
- W4292553573 crossrefType "journal-article" @default.
- W4292553573 hasAuthorship W4292553573A5008360633 @default.
- W4292553573 hasAuthorship W4292553573A5027636891 @default.
- W4292553573 hasBestOaLocation W42925535731 @default.
- W4292553573 hasConcept C111919701 @default.
- W4292553573 hasConcept C11413529 @default.
- W4292553573 hasConcept C119857082 @default.
- W4292553573 hasConcept C120314980 @default.
- W4292553573 hasConcept C127413603 @default.
- W4292553573 hasConcept C154945302 @default.
- W4292553573 hasConcept C162307627 @default.
- W4292553573 hasConcept C200601418 @default.
- W4292553573 hasConcept C2778456923 @default.
- W4292553573 hasConcept C41008148 @default.
- W4292553573 hasConcept C70452415 @default.
- W4292553573 hasConcept C79974875 @default.
- W4292553573 hasConceptScore W4292553573C111919701 @default.
- W4292553573 hasConceptScore W4292553573C11413529 @default.
- W4292553573 hasConceptScore W4292553573C119857082 @default.
- W4292553573 hasConceptScore W4292553573C120314980 @default.
- W4292553573 hasConceptScore W4292553573C127413603 @default.
- W4292553573 hasConceptScore W4292553573C154945302 @default.
- W4292553573 hasConceptScore W4292553573C162307627 @default.
- W4292553573 hasConceptScore W4292553573C200601418 @default.
- W4292553573 hasConceptScore W4292553573C2778456923 @default.
- W4292553573 hasConceptScore W4292553573C41008148 @default.
- W4292553573 hasConceptScore W4292553573C70452415 @default.
- W4292553573 hasConceptScore W4292553573C79974875 @default.
- W4292553573 hasFunder F4320326008 @default.
- W4292553573 hasIssue "16" @default.
- W4292553573 hasLocation W42925535731 @default.
- W4292553573 hasLocation W42925535732 @default.
- W4292553573 hasLocation W42925535733 @default.
- W4292553573 hasLocation W42925535734 @default.
- W4292553573 hasOpenAccess W4292553573 @default.
- W4292553573 hasPrimaryLocation W42925535731 @default.
- W4292553573 hasRelatedWork W2534668683 @default.
- W4292553573 hasRelatedWork W2942586735 @default.
- W4292553573 hasRelatedWork W3126507566 @default.
- W4292553573 hasRelatedWork W3192562541 @default.
- W4292553573 hasRelatedWork W3211931762 @default.
- W4292553573 hasRelatedWork W4200512257 @default.
- W4292553573 hasRelatedWork W4205122430 @default.
- W4292553573 hasRelatedWork W4225757241 @default.
- W4292553573 hasRelatedWork W4385414328 @default.
- W4292553573 hasRelatedWork W4385586765 @default.
- W4292553573 hasVolume "22" @default.
- W4292553573 isParatext "false" @default.
- W4292553573 isRetracted "false" @default.
- W4292553573 workType "article" @default.