Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292554278> ?p ?o ?g. }
- W4292554278 endingPage "2154" @default.
- W4292554278 startingPage "2154" @default.
- W4292554278 abstract "Pseudomonas syringae pv. actinidiae (Psa) has been responsible for numerous epidemics of bacterial canker of kiwi (BCK), resulting in high losses in kiwi production worldwide. Current diagnostic approaches for this disease usually depend on visible signs of the infection (disease symptoms) to be present. Since these symptoms frequently manifest themselves in the middle to late stages of the infection process, the effectiveness of phytosanitary measures can be compromised. Hyperspectral spectroscopy has the potential to be an effective, non-invasive, rapid, cost-effective, high-throughput approach for improving BCK diagnostics. This study aimed to investigate the potential of hyperspectral UV-VIS reflectance for in-situ, non-destructive discrimination of bacterial canker on kiwi leaves. Spectral reflectance (325-1075 nm) of twenty plants were obtained with a handheld spectroradiometer in two commercial kiwi orchards located in Portugal, for 15 weeks, totaling 504 spectral measurements. Several modeling approaches based on continuous hyperspectral data or specific wavelengths, chosen by different feature selection algorithms, were tested to discriminate BCK on leaves. Spectral separability of asymptomatic and symptomatic leaves was observed in all multi-variate and machine learning models, including the FDA, GLM, PLS, and SVM methods. The combination of a stepwise forward variable selection approach using a support vector machine algorithm with a radial kernel and class weights was selected as the final model. Its overall accuracy was 85%, with a 0.70 kappa score and 0.84 F-measure. These results were coherent with leaves classified as asymptomatic or symptomatic by visual inspection. Overall, the findings herein reported support the implementation of spectral point measurements acquired in situ for crop disease diagnosis." @default.
- W4292554278 created "2022-08-22" @default.
- W4292554278 creator A5032565064 @default.
- W4292554278 creator A5050279632 @default.
- W4292554278 creator A5057669030 @default.
- W4292554278 creator A5063898861 @default.
- W4292554278 creator A5075213809 @default.
- W4292554278 creator A5088304035 @default.
- W4292554278 date "2022-08-19" @default.
- W4292554278 modified "2023-10-01" @default.
- W4292554278 title "Kiwi Plant Canker Diagnosis Using Hyperspectral Signal Processing and Machine Learning: Detecting Symptoms Caused by Pseudomonas syringae pv. actinidiae" @default.
- W4292554278 cites W1489608533 @default.
- W4292554278 cites W1557319917 @default.
- W4292554278 cites W1938887115 @default.
- W4292554278 cites W1967621805 @default.
- W4292554278 cites W1970664916 @default.
- W4292554278 cites W1976633243 @default.
- W4292554278 cites W1980590807 @default.
- W4292554278 cites W1996379195 @default.
- W4292554278 cites W1998351672 @default.
- W4292554278 cites W2009409575 @default.
- W4292554278 cites W2009517474 @default.
- W4292554278 cites W2014915963 @default.
- W4292554278 cites W2018027183 @default.
- W4292554278 cites W2019610851 @default.
- W4292554278 cites W2021348618 @default.
- W4292554278 cites W2026184927 @default.
- W4292554278 cites W2029697302 @default.
- W4292554278 cites W2037798659 @default.
- W4292554278 cites W2040698615 @default.
- W4292554278 cites W2046404820 @default.
- W4292554278 cites W2049398443 @default.
- W4292554278 cites W2056392803 @default.
- W4292554278 cites W2062946716 @default.
- W4292554278 cites W2068778426 @default.
- W4292554278 cites W2073503722 @default.
- W4292554278 cites W2077653178 @default.
- W4292554278 cites W2081480383 @default.
- W4292554278 cites W2092890379 @default.
- W4292554278 cites W2102273661 @default.
- W4292554278 cites W2103959917 @default.
- W4292554278 cites W2139925058 @default.
- W4292554278 cites W2153977564 @default.
- W4292554278 cites W2154290668 @default.
- W4292554278 cites W2162255944 @default.
- W4292554278 cites W2162772680 @default.
- W4292554278 cites W221493477 @default.
- W4292554278 cites W2377725314 @default.
- W4292554278 cites W2586954078 @default.
- W4292554278 cites W2589541741 @default.
- W4292554278 cites W2604526558 @default.
- W4292554278 cites W2605010402 @default.
- W4292554278 cites W2606627775 @default.
- W4292554278 cites W2617056706 @default.
- W4292554278 cites W2736770001 @default.
- W4292554278 cites W2743284109 @default.
- W4292554278 cites W2761176843 @default.
- W4292554278 cites W2769698327 @default.
- W4292554278 cites W2799848215 @default.
- W4292554278 cites W2886359012 @default.
- W4292554278 cites W2887394681 @default.
- W4292554278 cites W2903242478 @default.
- W4292554278 cites W2956702585 @default.
- W4292554278 cites W2962998787 @default.
- W4292554278 cites W2970515629 @default.
- W4292554278 cites W2978918038 @default.
- W4292554278 cites W2980382960 @default.
- W4292554278 cites W2982381523 @default.
- W4292554278 cites W2982551483 @default.
- W4292554278 cites W2985102654 @default.
- W4292554278 cites W2993931676 @default.
- W4292554278 cites W2996983360 @default.
- W4292554278 cites W3000417860 @default.
- W4292554278 cites W3035180218 @default.
- W4292554278 cites W3040595171 @default.
- W4292554278 cites W3044650763 @default.
- W4292554278 cites W3048737239 @default.
- W4292554278 cites W3091107621 @default.
- W4292554278 cites W3091358740 @default.
- W4292554278 cites W3092616522 @default.
- W4292554278 cites W3093634062 @default.
- W4292554278 cites W3108758829 @default.
- W4292554278 cites W3128013506 @default.
- W4292554278 cites W3210899060 @default.
- W4292554278 cites W4210672917 @default.
- W4292554278 cites W4281735332 @default.
- W4292554278 doi "https://doi.org/10.3390/plants11162154" @default.
- W4292554278 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36015456" @default.
- W4292554278 hasPublicationYear "2022" @default.
- W4292554278 type Work @default.
- W4292554278 citedByCount "3" @default.
- W4292554278 countsByYear W42925542782023 @default.
- W4292554278 crossrefType "journal-article" @default.
- W4292554278 hasAuthorship W4292554278A5032565064 @default.
- W4292554278 hasAuthorship W4292554278A5050279632 @default.
- W4292554278 hasAuthorship W4292554278A5057669030 @default.
- W4292554278 hasAuthorship W4292554278A5063898861 @default.
- W4292554278 hasAuthorship W4292554278A5075213809 @default.