Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292559802> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4292559802 endingPage "118639" @default.
- W4292559802 startingPage "118639" @default.
- W4292559802 abstract "Drainage pattern (DP) recognition is critical in hydrographic analysis, topography identification, and drainage characteristic detection. The traditional method is based on rule computation and self-similarity idea preliminarily performing the DP classification. However, DP segmentation is an uncertain spatial cognitive problem affected by enormous factors. To settle such a multi-conditions decision question, this study takes the segmentation of parallel drainage pattern (SPDP) as an example presenting a deep learning method, namely the graph convolution neural network (GCNN) based on Graph SAmple and aggreGatE (GraphSAGE). First, a directed graph and dual graph were used to construct a dual drainage graph recording spatial-cognition features of drainage. Second, nine drainage features were built to define the graph description from three perspectives: topological connectivity, meandering equilibrium, and directional unity. Finally, the GraphSAGE model was designed for SPDP and trained by typical samples to finish the segmentation works. The experiment examined the optimal feature combination and hyperparameter sensitivity, which can provide sufficient information for SPDP supported by GraphSAGE. Besides, our model outperformed other machine learning methods and GCNNs driven by a fixed quantity sampling mechanism and hydrological knowledge. This work provides a vital reference for hydrology research supported by combing hydrological knowledge with GCNNs." @default.
- W4292559802 created "2022-08-22" @default.
- W4292559802 creator A5011293348 @default.
- W4292559802 creator A5029956180 @default.
- W4292559802 creator A5056961387 @default.
- W4292559802 creator A5081235198 @default.
- W4292559802 creator A5082266707 @default.
- W4292559802 date "2023-01-01" @default.
- W4292559802 modified "2023-10-10" @default.
- W4292559802 title "Automatic segmentation of parallel drainage patterns supported by a graph convolution neural network" @default.
- W4292559802 cites W1524382012 @default.
- W4292559802 cites W1986118217 @default.
- W4292559802 cites W1991699684 @default.
- W4292559802 cites W2006878581 @default.
- W4292559802 cites W2010568380 @default.
- W4292559802 cites W2020114319 @default.
- W4292559802 cites W2024404280 @default.
- W4292559802 cites W2033537915 @default.
- W4292559802 cites W2301534275 @default.
- W4292559802 cites W2559984049 @default.
- W4292559802 cites W2608000196 @default.
- W4292559802 cites W2765123421 @default.
- W4292559802 cites W2902321995 @default.
- W4292559802 cites W2920964209 @default.
- W4292559802 cites W2944925181 @default.
- W4292559802 cites W2963084622 @default.
- W4292559802 cites W2979363529 @default.
- W4292559802 cites W2990642588 @default.
- W4292559802 cites W2994434065 @default.
- W4292559802 cites W3018456097 @default.
- W4292559802 cites W3023351371 @default.
- W4292559802 cites W3039500550 @default.
- W4292559802 cites W3102518714 @default.
- W4292559802 cites W3103458544 @default.
- W4292559802 cites W3133844141 @default.
- W4292559802 cites W3134633779 @default.
- W4292559802 cites W3135126037 @default.
- W4292559802 cites W3195703378 @default.
- W4292559802 cites W2765912827 @default.
- W4292559802 doi "https://doi.org/10.1016/j.eswa.2022.118639" @default.
- W4292559802 hasPublicationYear "2023" @default.
- W4292559802 type Work @default.
- W4292559802 citedByCount "5" @default.
- W4292559802 countsByYear W42925598022023 @default.
- W4292559802 crossrefType "journal-article" @default.
- W4292559802 hasAuthorship W4292559802A5011293348 @default.
- W4292559802 hasAuthorship W4292559802A5029956180 @default.
- W4292559802 hasAuthorship W4292559802A5056961387 @default.
- W4292559802 hasAuthorship W4292559802A5081235198 @default.
- W4292559802 hasAuthorship W4292559802A5082266707 @default.
- W4292559802 hasBestOaLocation W42925598021 @default.
- W4292559802 hasConcept C119857082 @default.
- W4292559802 hasConcept C132525143 @default.
- W4292559802 hasConcept C153180895 @default.
- W4292559802 hasConcept C154945302 @default.
- W4292559802 hasConcept C18903297 @default.
- W4292559802 hasConcept C41008148 @default.
- W4292559802 hasConcept C50644808 @default.
- W4292559802 hasConcept C67592535 @default.
- W4292559802 hasConcept C80444323 @default.
- W4292559802 hasConcept C81363708 @default.
- W4292559802 hasConcept C8642999 @default.
- W4292559802 hasConcept C86803240 @default.
- W4292559802 hasConcept C89600930 @default.
- W4292559802 hasConceptScore W4292559802C119857082 @default.
- W4292559802 hasConceptScore W4292559802C132525143 @default.
- W4292559802 hasConceptScore W4292559802C153180895 @default.
- W4292559802 hasConceptScore W4292559802C154945302 @default.
- W4292559802 hasConceptScore W4292559802C18903297 @default.
- W4292559802 hasConceptScore W4292559802C41008148 @default.
- W4292559802 hasConceptScore W4292559802C50644808 @default.
- W4292559802 hasConceptScore W4292559802C67592535 @default.
- W4292559802 hasConceptScore W4292559802C80444323 @default.
- W4292559802 hasConceptScore W4292559802C81363708 @default.
- W4292559802 hasConceptScore W4292559802C8642999 @default.
- W4292559802 hasConceptScore W4292559802C86803240 @default.
- W4292559802 hasConceptScore W4292559802C89600930 @default.
- W4292559802 hasFunder F4320321001 @default.
- W4292559802 hasLocation W42925598021 @default.
- W4292559802 hasOpenAccess W4292559802 @default.
- W4292559802 hasPrimaryLocation W42925598021 @default.
- W4292559802 hasRelatedWork W2767651786 @default.
- W4292559802 hasRelatedWork W3021430260 @default.
- W4292559802 hasRelatedWork W3027997911 @default.
- W4292559802 hasRelatedWork W4200528772 @default.
- W4292559802 hasRelatedWork W4210794429 @default.
- W4292559802 hasRelatedWork W4223456145 @default.
- W4292559802 hasRelatedWork W4287776258 @default.
- W4292559802 hasRelatedWork W4295309597 @default.
- W4292559802 hasRelatedWork W4304182771 @default.
- W4292559802 hasRelatedWork W4309113015 @default.
- W4292559802 hasVolume "211" @default.
- W4292559802 isParatext "false" @default.
- W4292559802 isRetracted "false" @default.
- W4292559802 workType "article" @default.