Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292560167> ?p ?o ?g. }
- W4292560167 endingPage "9" @default.
- W4292560167 startingPage "1" @default.
- W4292560167 abstract "The intelligent inspection of ceramic decorative defects is one of the hot research at present. This work aims to improve the defect inspection automation of finished decorative ceramic workpieces. First, it introduces the multi-target detection algorithm and compares the performance of different network models on the public data set. Second, the initial images are collected on the spot. The initial pictures are easy to produce noise in actual deployment, affecting the image quality. Therefore, image preprocessing is performed for the initial images, and a median filtering method is used to calculate the denoising. Finally, the original You Only Look Once version 3 network model is realized. Based on this, the decorative ceramic-oriented Automated Surface Defect Inspection model is proposed. Then, decorative ceramic defect images are inputted for model training. The experimental conclusions are deeply studied and analyzed. The results show that the proposed decorative ceramic-oriented Automated Surface Defect Inspection model based on Deep Learning technology has good feature extraction and inspection ability. The detection accuracy is 94.90% on the test set, and the detection speed reaches 25 frames per second. Compared with the traditional manual inspection method, the proposed model greatly improves the inspection effect and can meet the on-site inspection requirements of surface defects of decorative ceramics under complex backgrounds. It is of great significance to improve the quality inspection efficiency and economic benefits of China's decorative ceramics industry." @default.
- W4292560167 created "2022-08-22" @default.
- W4292560167 creator A5034642624 @default.
- W4292560167 creator A5067518183 @default.
- W4292560167 date "2022-08-21" @default.
- W4292560167 modified "2023-10-14" @default.
- W4292560167 title "Inspecting Decorative Ceramic Defects by Fusing Convolutional Neural Network and Image Recognition" @default.
- W4292560167 cites W2783489174 @default.
- W4292560167 cites W2794550100 @default.
- W4292560167 cites W2911540048 @default.
- W4292560167 cites W2923894441 @default.
- W4292560167 cites W2947169773 @default.
- W4292560167 cites W2947312223 @default.
- W4292560167 cites W2955793676 @default.
- W4292560167 cites W2957777175 @default.
- W4292560167 cites W2969750612 @default.
- W4292560167 cites W2974140502 @default.
- W4292560167 cites W2998670262 @default.
- W4292560167 cites W2999222884 @default.
- W4292560167 cites W3003525670 @default.
- W4292560167 cites W3004895274 @default.
- W4292560167 cites W3007872274 @default.
- W4292560167 cites W3012334084 @default.
- W4292560167 cites W3014902535 @default.
- W4292560167 cites W3024975910 @default.
- W4292560167 cites W3034326629 @default.
- W4292560167 cites W3040803262 @default.
- W4292560167 cites W3044942467 @default.
- W4292560167 cites W3087751617 @default.
- W4292560167 cites W3099132019 @default.
- W4292560167 cites W3102511045 @default.
- W4292560167 cites W3129495705 @default.
- W4292560167 cites W3211748865 @default.
- W4292560167 cites W3212188983 @default.
- W4292560167 cites W4200185419 @default.
- W4292560167 cites W4200580174 @default.
- W4292560167 cites W4205239923 @default.
- W4292560167 cites W4210483501 @default.
- W4292560167 cites W4210846093 @default.
- W4292560167 cites W4212769179 @default.
- W4292560167 cites W4213430755 @default.
- W4292560167 cites W4214678470 @default.
- W4292560167 cites W4220992464 @default.
- W4292560167 cites W4221101697 @default.
- W4292560167 cites W4224248328 @default.
- W4292560167 cites W4225746160 @default.
- W4292560167 cites W4226284253 @default.
- W4292560167 cites W4228996687 @default.
- W4292560167 doi "https://doi.org/10.1155/2022/3983919" @default.
- W4292560167 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36045964" @default.
- W4292560167 hasPublicationYear "2022" @default.
- W4292560167 type Work @default.
- W4292560167 citedByCount "1" @default.
- W4292560167 crossrefType "journal-article" @default.
- W4292560167 hasAuthorship W4292560167A5034642624 @default.
- W4292560167 hasAuthorship W4292560167A5067518183 @default.
- W4292560167 hasBestOaLocation W42925601671 @default.
- W4292560167 hasConcept C115961682 @default.
- W4292560167 hasConcept C134132462 @default.
- W4292560167 hasConcept C138885662 @default.
- W4292560167 hasConcept C153180895 @default.
- W4292560167 hasConcept C154945302 @default.
- W4292560167 hasConcept C159985019 @default.
- W4292560167 hasConcept C177264268 @default.
- W4292560167 hasConcept C192562407 @default.
- W4292560167 hasConcept C199360897 @default.
- W4292560167 hasConcept C2776401178 @default.
- W4292560167 hasConcept C31972630 @default.
- W4292560167 hasConcept C34736171 @default.
- W4292560167 hasConcept C41008148 @default.
- W4292560167 hasConcept C41895202 @default.
- W4292560167 hasConcept C50644808 @default.
- W4292560167 hasConcept C81363708 @default.
- W4292560167 hasConcept C99498987 @default.
- W4292560167 hasConceptScore W4292560167C115961682 @default.
- W4292560167 hasConceptScore W4292560167C134132462 @default.
- W4292560167 hasConceptScore W4292560167C138885662 @default.
- W4292560167 hasConceptScore W4292560167C153180895 @default.
- W4292560167 hasConceptScore W4292560167C154945302 @default.
- W4292560167 hasConceptScore W4292560167C159985019 @default.
- W4292560167 hasConceptScore W4292560167C177264268 @default.
- W4292560167 hasConceptScore W4292560167C192562407 @default.
- W4292560167 hasConceptScore W4292560167C199360897 @default.
- W4292560167 hasConceptScore W4292560167C2776401178 @default.
- W4292560167 hasConceptScore W4292560167C31972630 @default.
- W4292560167 hasConceptScore W4292560167C34736171 @default.
- W4292560167 hasConceptScore W4292560167C41008148 @default.
- W4292560167 hasConceptScore W4292560167C41895202 @default.
- W4292560167 hasConceptScore W4292560167C50644808 @default.
- W4292560167 hasConceptScore W4292560167C81363708 @default.
- W4292560167 hasConceptScore W4292560167C99498987 @default.
- W4292560167 hasLocation W42925601671 @default.
- W4292560167 hasLocation W42925601672 @default.
- W4292560167 hasLocation W42925601673 @default.
- W4292560167 hasOpenAccess W4292560167 @default.
- W4292560167 hasPrimaryLocation W42925601671 @default.
- W4292560167 hasRelatedWork W2368524271 @default.
- W4292560167 hasRelatedWork W2397288865 @default.