Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292565982> ?p ?o ?g. }
- W4292565982 abstract "Quantification of histological information from excised human abdominal aortic aneurysm (AAA) specimens may provide essential information on the degree of infiltration of inflammatory cells in different regions of the AAA. Such information will support mechanistic insight in AAA pathology and can be linked to clinical measures for further development of AAA treatment regimens. We hypothesize that artificial intelligence can support high throughput analyses of histological sections of excised human AAA. We present an analysis framework based on supervised machine learning. We used TensorFlow and QuPath to determine the overall architecture of the AAA: thrombus, arterial wall, and adventitial loose connective tissue. Within the wall and adventitial zones, the content of collagen, elastin, and specific inflammatory cells was quantified. A deep neural network (DNN) was trained on manually annotated, Weigert stained, tissue sections (14 patients) and validated on images from two other patients. Finally, we applied the method on 95 new patient samples. The DNN was able to segment the sections according to the overall wall architecture with Jaccard coefficients after 65 epocs of 92% for the training and 88% for the validation data set, respectively. Precision and recall both reached 92%. The zone areas were highly variable between patients, as were the outputs on total cell count and elastin/collagen fiber content. The number of specific cells or stained area per zone was deterministically determined. However, combining the masks based on the Weigert stainings, with images of immunostained serial sections requires addition of landmark recognition to the analysis path. The combination of digital pathology, the DNN we developed, and landmark registration will provide a strong tool for future analyses of the histology of excised human AAA. In combination with biomechanical testing and microstructurally motivated mathematical models of AAA remodeling, the method has the potential to be a strong tool to provide mechanistic insight in the disease. In combination with each patients' demographic and clinical profile, the method can be an interesting tool to in supportof a better treatment regime for the patients." @default.
- W4292565982 created "2022-08-22" @default.
- W4292565982 creator A5009672567 @default.
- W4292565982 creator A5011959319 @default.
- W4292565982 creator A5016747250 @default.
- W4292565982 creator A5017072444 @default.
- W4292565982 creator A5029823438 @default.
- W4292565982 creator A5085426885 @default.
- W4292565982 date "2022-08-22" @default.
- W4292565982 modified "2023-09-30" @default.
- W4292565982 title "Artificial intelligence assisted compositional analyses of human abdominal aortic aneurysms ex vivo" @default.
- W4292565982 cites W1901129140 @default.
- W4292565982 cites W1993947467 @default.
- W4292565982 cites W2053339527 @default.
- W4292565982 cites W2086320398 @default.
- W4292565982 cites W2116336500 @default.
- W4292565982 cites W2117539524 @default.
- W4292565982 cites W2120386046 @default.
- W4292565982 cites W2123402141 @default.
- W4292565982 cites W2132031490 @default.
- W4292565982 cites W2140464053 @default.
- W4292565982 cites W2156163116 @default.
- W4292565982 cites W2167279371 @default.
- W4292565982 cites W2168593098 @default.
- W4292565982 cites W2279016893 @default.
- W4292565982 cites W2289196382 @default.
- W4292565982 cites W2401520370 @default.
- W4292565982 cites W2508322647 @default.
- W4292565982 cites W2515717359 @default.
- W4292565982 cites W2527829745 @default.
- W4292565982 cites W2618004756 @default.
- W4292565982 cites W2755715875 @default.
- W4292565982 cites W2791961975 @default.
- W4292565982 cites W2800330682 @default.
- W4292565982 cites W2806830338 @default.
- W4292565982 cites W2886758938 @default.
- W4292565982 cites W2892809851 @default.
- W4292565982 cites W2896563961 @default.
- W4292565982 cites W2901378137 @default.
- W4292565982 cites W2912510189 @default.
- W4292565982 cites W2912711077 @default.
- W4292565982 cites W2945574311 @default.
- W4292565982 cites W2952481429 @default.
- W4292565982 cites W2954837181 @default.
- W4292565982 cites W2964756323 @default.
- W4292565982 cites W2966757612 @default.
- W4292565982 cites W3093154039 @default.
- W4292565982 cites W3178743570 @default.
- W4292565982 cites W4292528167 @default.
- W4292565982 doi "https://doi.org/10.3389/fphys.2022.840965" @default.
- W4292565982 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36072852" @default.
- W4292565982 hasPublicationYear "2022" @default.
- W4292565982 type Work @default.
- W4292565982 citedByCount "0" @default.
- W4292565982 crossrefType "journal-article" @default.
- W4292565982 hasAuthorship W4292565982A5009672567 @default.
- W4292565982 hasAuthorship W4292565982A5011959319 @default.
- W4292565982 hasAuthorship W4292565982A5016747250 @default.
- W4292565982 hasAuthorship W4292565982A5017072444 @default.
- W4292565982 hasAuthorship W4292565982A5029823438 @default.
- W4292565982 hasAuthorship W4292565982A5085426885 @default.
- W4292565982 hasBestOaLocation W42925659821 @default.
- W4292565982 hasConcept C108583219 @default.
- W4292565982 hasConcept C126838900 @default.
- W4292565982 hasConcept C136229726 @default.
- W4292565982 hasConcept C142724271 @default.
- W4292565982 hasConcept C150903083 @default.
- W4292565982 hasConcept C154945302 @default.
- W4292565982 hasConcept C207001950 @default.
- W4292565982 hasConcept C26291073 @default.
- W4292565982 hasConcept C2776098176 @default.
- W4292565982 hasConcept C2779869378 @default.
- W4292565982 hasConcept C2779993416 @default.
- W4292565982 hasConcept C41008148 @default.
- W4292565982 hasConcept C518705261 @default.
- W4292565982 hasConcept C71924100 @default.
- W4292565982 hasConcept C86803240 @default.
- W4292565982 hasConcept C89600930 @default.
- W4292565982 hasConceptScore W4292565982C108583219 @default.
- W4292565982 hasConceptScore W4292565982C126838900 @default.
- W4292565982 hasConceptScore W4292565982C136229726 @default.
- W4292565982 hasConceptScore W4292565982C142724271 @default.
- W4292565982 hasConceptScore W4292565982C150903083 @default.
- W4292565982 hasConceptScore W4292565982C154945302 @default.
- W4292565982 hasConceptScore W4292565982C207001950 @default.
- W4292565982 hasConceptScore W4292565982C26291073 @default.
- W4292565982 hasConceptScore W4292565982C2776098176 @default.
- W4292565982 hasConceptScore W4292565982C2779869378 @default.
- W4292565982 hasConceptScore W4292565982C2779993416 @default.
- W4292565982 hasConceptScore W4292565982C41008148 @default.
- W4292565982 hasConceptScore W4292565982C518705261 @default.
- W4292565982 hasConceptScore W4292565982C71924100 @default.
- W4292565982 hasConceptScore W4292565982C86803240 @default.
- W4292565982 hasConceptScore W4292565982C89600930 @default.
- W4292565982 hasFunder F4320309763 @default.
- W4292565982 hasFunder F4320322441 @default.
- W4292565982 hasLocation W42925659821 @default.
- W4292565982 hasLocation W42925659822 @default.
- W4292565982 hasLocation W42925659823 @default.
- W4292565982 hasLocation W42925659824 @default.