Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292582582> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4292582582 abstract "The flow of gas in the flow path of a gas turbine engine (GTE) is accompanied by a rather complex phenomenon. These are a three-dimensional boundary layer, an incoming vortex, a paired vortex, flow turbulence, aerodynamic wakes behind the trailing edge, separation of the boundary layer from the blade surface, pressure pulsations, uneven and unsteady flow, secondary overflows, changes in the angles of flow exit, etc. Flow R&D of a GTE remains a rather complex process, and requires the use of reliable research methods and techniques. Nowadays, two known methods are used to study a gas flow through the flow path of a GTE ˗ experimental and calculated. Calculated, in turn, can be divided into analytical and numerical. An important stage of the numerical experiment is the solution to test problems for the possibility of setting the parameters of the numerical experiment. In this work, two test tasks were carried out. The object of the research was two compressor cascades, consisting of the identical airfoils series KR-33. The profile chord was 52 mm; the pitch cascade was 52 mm. The difference was in the installation angle of these profiles: variant 1 of the compressor cascade has an installation angle of 63.5º; variant 2 of the compressor cascade has an installation angle of 89.5º. A computational domain was constructed for each compressor cascades of airfoils and consisted of 5 million cells. Air under normal atmospheric conditions was chosen as the working fluid. The flow regime of compressor cascades varied in the range of coefficient λ = 0.26…0.9 and λ = 0.265…0.8, where the coefficient λ is the reduced velocity. The unstructured mesh method with an adaptation for the boundary layer was chosen to construct the computational mesh. Such a combination makes it possible to correctly model the flow in the boundary layer near the walls. The turbulence model SST was taken to close the Navier-Stokes equations. A comparison of the results of numerical and physical experiments for two variants of compressor cascades shows that the flow simulation error is less than 5%. Because of the calculation, the choice of this turbulence model for subsequent studies of the flow in the stages of the compressor, fan, and propfan will be justified." @default.
- W4292582582 created "2022-08-22" @default.
- W4292582582 creator A5010439433 @default.
- W4292582582 creator A5053695228 @default.
- W4292582582 creator A5059838487 @default.
- W4292582582 date "2022-08-22" @default.
- W4292582582 modified "2023-09-26" @default.
- W4292582582 title "Test problem of the flow modeling in axial compressor cascades" @default.
- W4292582582 doi "https://doi.org/10.32620/aktt.2022.4sup2.02" @default.
- W4292582582 hasPublicationYear "2022" @default.
- W4292582582 type Work @default.
- W4292582582 citedByCount "0" @default.
- W4292582582 crossrefType "journal-article" @default.
- W4292582582 hasAuthorship W4292582582A5010439433 @default.
- W4292582582 hasAuthorship W4292582582A5053695228 @default.
- W4292582582 hasAuthorship W4292582582A5059838487 @default.
- W4292582582 hasConcept C111603439 @default.
- W4292582582 hasConcept C112124176 @default.
- W4292582582 hasConcept C121332964 @default.
- W4292582582 hasConcept C127413603 @default.
- W4292582582 hasConcept C131097465 @default.
- W4292582582 hasConcept C13393347 @default.
- W4292582582 hasConcept C140820882 @default.
- W4292582582 hasConcept C146978453 @default.
- W4292582582 hasConcept C1633027 @default.
- W4292582582 hasConcept C180788929 @default.
- W4292582582 hasConcept C196558001 @default.
- W4292582582 hasConcept C2779570065 @default.
- W4292582582 hasConcept C34146451 @default.
- W4292582582 hasConcept C38349280 @default.
- W4292582582 hasConcept C42360764 @default.
- W4292582582 hasConcept C44154836 @default.
- W4292582582 hasConcept C57879066 @default.
- W4292582582 hasConcept C77576233 @default.
- W4292582582 hasConceptScore W4292582582C111603439 @default.
- W4292582582 hasConceptScore W4292582582C112124176 @default.
- W4292582582 hasConceptScore W4292582582C121332964 @default.
- W4292582582 hasConceptScore W4292582582C127413603 @default.
- W4292582582 hasConceptScore W4292582582C131097465 @default.
- W4292582582 hasConceptScore W4292582582C13393347 @default.
- W4292582582 hasConceptScore W4292582582C140820882 @default.
- W4292582582 hasConceptScore W4292582582C146978453 @default.
- W4292582582 hasConceptScore W4292582582C1633027 @default.
- W4292582582 hasConceptScore W4292582582C180788929 @default.
- W4292582582 hasConceptScore W4292582582C196558001 @default.
- W4292582582 hasConceptScore W4292582582C2779570065 @default.
- W4292582582 hasConceptScore W4292582582C34146451 @default.
- W4292582582 hasConceptScore W4292582582C38349280 @default.
- W4292582582 hasConceptScore W4292582582C42360764 @default.
- W4292582582 hasConceptScore W4292582582C44154836 @default.
- W4292582582 hasConceptScore W4292582582C57879066 @default.
- W4292582582 hasConceptScore W4292582582C77576233 @default.
- W4292582582 hasIssue "4sup2" @default.
- W4292582582 hasLocation W42925825821 @default.
- W4292582582 hasLocation W42925825822 @default.
- W4292582582 hasOpenAccess W4292582582 @default.
- W4292582582 hasPrimaryLocation W42925825821 @default.
- W4292582582 hasRelatedWork W2047615270 @default.
- W4292582582 hasRelatedWork W2048622153 @default.
- W4292582582 hasRelatedWork W2104144103 @default.
- W4292582582 hasRelatedWork W2106186171 @default.
- W4292582582 hasRelatedWork W2178962309 @default.
- W4292582582 hasRelatedWork W2206047795 @default.
- W4292582582 hasRelatedWork W2392067110 @default.
- W4292582582 hasRelatedWork W2902871285 @default.
- W4292582582 hasRelatedWork W336312124 @default.
- W4292582582 hasRelatedWork W829857535 @default.
- W4292582582 isParatext "false" @default.
- W4292582582 isRetracted "false" @default.
- W4292582582 workType "article" @default.